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Abstract 
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Chair: Carolyn F. Ross 

Advanced mathematical modeling can be applied to give insight into dynamic systems, 

including wine.  Two of these mathematical models include Singular Value Decomposition and 

Support Vector Machines. This thesis used both SVD and SVR to data mine, examine overall 

sensory panel performance, and identify outliers from a previously conducted study on model red 

wines. In this previous study, twelve trained panelists rated the intensity of 20 different sensory 

attributes in model red wines varying in ethanol, tannin and fructose concentrations. These 

evaluation scores were analyzed using standard statistical methods including analysis of variance 

(ANOVA) and Principal Component Analysis (PCA). Our study went beyond these traditional 

methods and applied advanced mathematical modeling to these intensity attribute ratings thus 

predicting panelist perception based on the composition of the sample.  Therefore, taking the 

data from the previous study and the known composition of the model wine, the thesis applied 

additional statistical and mathematical methods to create predictive models describing sensory 

perceptions.   Leaving out the panelists while re-running the model over multiple iterations with 

every combination of panelists removed, trained panelist who were considered “outliers” were 

identified using a “leave out then re-run” scenario. Using SVD and SVR, the sensory response of 
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the wines could be predicted from the chemical composition of the wine, with prediction rates of 

prediction: r = 0.9077 (first order SVD), 0.9170 (second order), and 0.9245 (third order), 

respectively. The first order SVD corresponds to the optimal linear model. The SVR method did 

not perform as well (r = 0.9198) as the higher order approximations using SVD although, this 

was likely due to incomplete model optimization. Using the methods developed by this work, 

several future applications for datamining were contemplated, including smartphone app 

development for consumer preference, models to guide winemaker blending decisions, robotics 

and sensor array development, and identification of outliers who may represent a niche market.    
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CHAPTER I: 

INTRODUCTION 

The ability to predict scientific relationships drives automation. In the current study, a 

statistical analysis was performed and a statistical learning theory method was applied to predict 

human intensity ratings from a trained sensory panel of a model red wine. This model red wine 

had already undergone sensory evaluation by a trained panel (Villamor et al. 2013). Using this 

sensory evaluation data, Singular Value Decomposition (SVD) was utilized to identify the fitness 

of our residual values and panelists who are considered to be “outliers.”  Higher order 

approximation was also performed on the SVD analysis to illustrate greater model fitness by 

increasing the number of terms thereby refining the approximation and increasing the model 

precision using a non-linear approach. A machine learning method used support vector machines 

regression (SVR) to create a linear regression model with parameter optimization. Both methods 

were then used to determine the feasibility of the respective model in predicting the sensory 

properties of the model wine based on its composition, including concentrations of ethanol, 

tannin, and fructose.  

In a previous study (Villamor et al. 2013), thirty six (n=36) different model wine 

solutions were prepared based on a full-factorial design used to assess the effects of ethanol (0, 8, 

10, 12, 14, and 16%, v/v), grape tannin, Biotan (500, 1000 and 1500 mg/L), and fructose 

(200mg/L and 2000mg/L). Eight chemical compounds were selected based on their sensory 

character and spiked at fixed concentrations: 250 mg/L 3-methyl-1-butanol (caramel), 0.002 

mg/L dimethyl disulfide (sulfur), 1 mg/L 1-hexanol (herbaceous), 0.0001 mg/L  1-octen-3-one 

(earthy), 0.02 mg/L methoxyphenol (woody), 30 mg/L 2-phenylethanol (floral), 0.5 mg/L 
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eugenol (spicy), and 0.03 mg/L β-damascenone (fruity). Twelve panelists participated in the 

trained sensory panel in which 10, 1 hour training sessions were conducted to ensure panelists 

evaluated the wines in a reproducible manner. The panelists rated the intensity of the above eight 

aromas, the corresponding eight flavors, as well as four mouthfeel descriptors including 

sourness, bitterness, heat, and drying. The sensory study was performed in triplicate. Our study 

only had access to data from the first and second repetitions of this experiment. 

This study first used Singular Value Decomposition (SVD). SVD is a factorization of a 

real or complex unitary matrix. It is closely related to Principal Component Analysis (PCA) in 

that the eigenvectors of the covariance matrix in PCA are the same as the singular values 

computed in SVD. Numerous wine sensory studies have been performed in the past using PCA 

(Kwan et al. 1980, Schaefer et al. 1983, Guignard et al. 1987, Heymann et al. 1987, Noble et al. 

1987, Heymann et al. 1989, Villamor 2012). However, thus far, few studies have explicitly 

utilized SVD. One study used SVD coupled with Artificial Neural Networks using Matlab for 

Windows version 4.2b (Sun et al. 1997). Our current study performed SVD on the matrix 

containing varying concentrations of ethanol, tannin, and fructose. From this analysis, outlying 

panelists were identified, at which point, we performed higher orders of approximation on the 

entire group of panelists using Matlab 2015a (Matlab 2015).  The application of this method 

allowed a feasibility examination resulting in the prediction of intensity of sensory attributes 

based on the composition of the wine using a matrix factorization process. We also repeated the 

process with higher order approximations, and determined our outlying panelists by computing 

and recomputing the model fitness while removing panelists in a “leave one out” scenario.  
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Second, the study utilized a machine learning algorithm to see if a machine could learn to 

predict better than the SVD model. A Support Vector Machines regression (SVR) was selected 

using LIBSVM, a library for Support Vector Machines (Chang 2011).  Support Vector Machines 

have been used in the past, achieving promising results when used to analyze a large sensory 

data set gathered from white and red wine sample evaluations from Portugal (Cortez et al. 2009). 

In the current study, Support Vector Machines was applied to construct a linear regression model 

(Support Vector Machines-Regression or just SVR) to predict if concentrations of ethanol, 

tannin, and fructose were responsible for intensity ratings of twenty attributes commonly 

associated with wine aroma, flavor, and mouthfeel. Optimization of the parameters was 

performed using the radial basis function kernel. This was written within a series of loops to 

determine minimal error, and provided as an optimized model output. The machine learning 

algorithm provided relative predictability of how a model wine tastes, smells, or feels in the 

mouth.  

The overall research objective was to examine the predictability of perceived sensory 

responses based on the concentrations of ethanol, tannin, and fructose. Several methods 

commonly found in statistics and statistical learning theory were used to illustrate the prediction 

of the panelist response based on the composition of the model wine. This thesis is divided into 5 

chapters. Following this introductory chapter is a review of literature on mathematical models 

used in sensory analysis in the past and the types of sensory tests used to gather this data. The 

third and fourth chapters contain the experiments where we performed SVD and SVR. Finally, a 

summary of conclusions and recommendations is included in chapter five. 
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CHAPTER II 

LITERATURE REVIEW 

Introduction to Wine Sensory Science and Datamining 

The wine matrix, composed of thousands of compounds related to the biochemistry of the 

grape is vast and complex. Early attempts at classification of the compounds responsible for a 

sensorial response were first studied around 1959 in the United States of America at The 

University of California and from grapes coming from the Oakville research station. Here, a 

group of applied scientists and mathematicians attempted to make sense of sensorial reporting in 

wine. The vast body of work done by many academic researchers spans over four decades and 

corresponds with some of the oldest literature in the United States on the subject. This occurred 

as the wine industry in California, particularly Napa, began to flourish and thrive.  

The new frontier and second largest producer of wine inside the United States is 

Washington State with its expansive Columbia River. In Washington, sensory evaluation caught 

on as well. Scientists there began the evaluations of wine grapes using methods which evolved 

over time and all across the globe. Today, comprehensive understanding of the sensory response 

system utilizes the knowledge of sensory testing methods from all over the world, the complex 

molecular system of wine components, as well as new advances in applied mathematics and data 

mining responsible for more than just wine research.  The creation of customized analytical 

tools, tailored to the system itself is becoming one way to understand plausible theories about 

any given data set thus driving a black box approach for understanding the applications of new 

mathematical methods and techniques.  
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 Sensory Testing and Psychophysics 

In sensory evaluation, sensory scientists attempt to measure peoples’ responses to foods 

or other consumer products. Psychophysics is the study of the relationship between energy in the 

environment and the response of the senses to that energy (Lawless 2013). In psychophysics, 

originally coined by Gustav Theodor Fechner, methods are classified into categories dealing with 

absolute thresholds, difference thresholds, scaling, and tradeoff relationships (Lawless, 2014). 

Several methods have been designed by sensory scientists in order to better understand and learn 

about human perception.  Some of the methods used are simple tests presented to panelists which 

participate in environments like booths to either eliminate noise or to provide alternative noise 

levels like lighting (Stone et al. 2012). The panelist environment is an important source of 

variance (Stone et al. 2012). Sensory scientists carefully design testing facilities to control 

sources of background noise resulting in panelist variance. These tests, performed by sensory 

panelists include difference tests, quantitative tests, and hedonic tests. Examination of the results 

requires a careful regard to the use of scale, employing data analysis techniques such as 

perceptual mapping, multivariate tools, graph theory, and datamining (Lawless 2013). 

Mathematical methods for modeling are a crucial piece in understanding and extrapolating 

results. As scientists, a constant fight against variation requires a deep understanding of what 

variation is and why it occurs. To begin, sensory scientists start with choosing a sensory 

evaluation test.   
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Difference Testing 

 One of the many tools used in sensory testing is the difference test. These tests were 

initially known as Thurstonian models and have become increasingly complex over nearly one 

hundred years. Each augmentation of the tests or alteration in its design sought to eliminate 

assumptions made in the past (Bi 2007).  Difference testing is used to determine if there is a 

difference among samples. Several types of major difference tests are commonly used in sensory 

testing. Some of the most common are paired comparison, duo-trio, triangle, tetrad, and r-index.  

Paired comparison determines if there is a difference between two samples. However, this test is 

not commonly used because it suffers from a response bias (Lawless & Heymann, 1998; M.  

O'Mahony, 1995). Duo-Trio tests consist of sets of three samples where one sample is identified 

the control (Fugelsang & Zoeklein, 2003; Larcher et al. 2008). Triangle tests also consist of sets 

of three samples; however, the control isn’t specified and the question asked of the panelists is 

“Which of these samples is different?”(Stone et al. 2012). Tetrad Testing provides more 

statistical power and requires four samples rather than three or two (O'Mahony 2013). This 

statistical power is better illustrated using an example of the Type II error. In many cases, one 

can argue that a major part of product research is more concerned with sameness than with 

differences. This creates an equivalence liability known as the error state of Type II error. In a 

nutshell, Type II error is that there really is a perceivable difference and that the sensory test 

missed the fact. Missing a difference that is really there; that is, failing to reject the null 

hypothesis when it is false. While most statistical research is aimed at preventing type I error or 

false positives, errors of type II are often much worse in applied product research and consumer 

product research. Type II represents missed opportunities (Lawless, 2013). The last type of 
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difference testing is the R-index or R-type test. In this test, samples are compared to a standard 

and rated in one of four categories. When performing this type of difference testing, these 

categories are “standard”, “perhaps standard”, “perhaps not standard”, and “not standard”. The 

results are expressed in terms of R-indices which represent values of correct discrimination 

(Kilcast, 2003; Lawless & Heymann, 1998). This test is not commonly used, but has been 

applied for the determination of threshold values for caffeine (Robinson, Klien, & Lee, 2005) 

off-flavors in beef (An, Shim, Lee, Hong, & Lee, 2009), and wine (M. O'Mahony & Goldstein, 

1986). While difference tests are commonly used to determine differences among samples, 

quantitative descriptive tests are also used to describe these specific differences. 

Quantitative Testing 

 Quantitative tests are used to define the differences found in difference tests and can 

employ different scales. These scales include categorical, line scales, or logarithmic scales. 

Common tests in this type of test are the Spectrum Descriptive Analysis Method ™, Flavor 

Profile method, and descriptive tests.  Quantitative descriptive analysis QDA profiles several 

different attributes at once (Lawless & Heymann, 1998). QDA has been used to characterize the 

aroma composition of Grenache rosé wines (Ferreira, Ortin, Escudero, Lopez, & Cacho, 2002), 

wines at different temperatures spiked with 4-ethylphenol (Cliff & King, 2009), and to evaluate 

Italian wines with an electronic tongue (Legin, Rudniskaya, Lvova, Vlasov, Di Natale, & 

D'Amico, 2003). Alterations to this type of test include manipulating the data by ranking and 

using non-parametric methods (Etievant, Issanchou, Ducruet, & Flanzy, 1989; Ugarte, Agosin, 

Bordeu, & Villalobos, 2005). Although this method compensates for variation among judges, 

sensory information can be lost.  
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Hedonic Testing 

 The last type of sensory test we’ll cover is hedonic testing. Hedonic testing evaluates the 

affective reactions to products. Using choice methods and scaling methods, a consumer is asked 

to choose which product they like better, or to rate a set of products from least liked or accepted 

to most liked or accepted. Hedonic testing includes preference testing and acceptability testing, 

classically using the nine-point hedonic scale. The following nine categories are common and 

include: 9 = Like extremely; 8 = Like very much; 7 = Like moderately; 6 = Like slightly; 5 = 

Neither like nor dislike; 4 = Dislike slightly; 3 = Dislike moderately; 2 = Dislike very much and 

1 = Dislike extremely (Lawless & Heymann, 1998). These tests require the panelists to be users 

of the product or product category, or sometimes simply purchasers of the product or product 

category. Hedonic testing has been used to sensory analysis of wine to examine quality, varietal, 

and regional reputation in New Zealand (Schamel & Anderson, 2003), to estimate price 

functions of Burgundian wine (Combris, Lecocq, & Visser, 2010), and to examine polyphenol 

preferences in wine (Noble & Lesschaeve, 2005). Hedonic tests are widely used in wine sensory 

science and examine preference with respect to scale.  

Scale 

 One of the most important tools sensory scientists have at their disposal is scale. Scale 

gives insight into the intensity of the panelist response. Scale gives measurement by assigning 

numbers as symbols of properties and can be manipulated in accordance with the rules of 

mathematics (Gescheider, 1997). Scaling is a fundamental process of matching between two 

continua (Lawless, 2013). Numbers can either be continuous, as in the case of magnitude 

estimation, or discrete, as in the case of integer category scales. Sensory scientists use scales to 
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help define blurred limits of resolution when dealing with panelist response (Lawless et al. 

1998). It’s important to note that functions which fit log, exponential data, and linear functions 

provide a theoretical space where variants thereof are used to capture predictive evidence and 

provide additional insight into how panelists use and judge their sensorial responses. These 

functions of scale can be analyzed using perceptual maps, multivariate tools and graph theory. 

Conclusions on Sensory Analysis 

 Sensory testing uses a variety of tests designed to capture panelist responses to sensorial 

data. As always, sensory scientists battle variation with the design of booths, the design of tests, 

and with mathematical constructs to mine their data. While sensory scientists utilize principles of 

psychophysics, the task of the sensory scientist is to apply sound scientific principles to capture 

valid data which can later be analyzed. This is done using difference testing, quantitative 

descriptions, hedonic testing, and scaling of their data. Each type of test uses different constraints 

to give the sensory scientists more insight into the interaction they are examining. Effects are 

commonly observed which illustrate attractiveness to certain variables, or synergisms. The 

understanding of statistical type I and type II errors is important as these errors are typically 

alleviated in opposing ways. In the next section, the historical approaches analysis in wine 

sensory science will be explored. While this is usually the last step in sensory science, it doesn’t 

need to be. New modelling techniques have already proven to be both valuable and insightful. 

Perceptual mapping, multivariate tools, graph theory, and statistical learning theory are at the 

edges of sensory science much like the outliers in data sets. 
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Mathematical Modelling Strategies in Wine Sensory Analysis 

Sensory analysis of wine in the United States began around 1959 when a group of 

scientists and mathematicians from The University of California used difference tests to assess 

differences among wines (Amerine et al. 1959). They begin with paired tests, duo-trio tests, and 

the triangle test. Their panel took wines from two regions: one from the Oakville Research 

Station in Napa Valley and the other in Davis, California. Vintages 1958 and 1959 were used 

with eight panelists half of whom possessed more than 15 years of tasting and were considered 

expert tasters. The other panelists consisted of experience levels significantly lower than the first 

four and one panelist had little or no experience. Tasters were given a score sheet and asked to 

rate attributes on a scale of one to twenty. Analysis of Variance was then performed using a fixed 

effects model (Scheffé 1952). A later version of the analysis published in Hilgardia includes a 

test for homogenous variance and was done to modernize the methods performed previously 

(Ough et al. 1961). Mean scores were also calculated using the data (Duncan 1955). At this time, 

it appeared the model was poorly constructed because of mixed effects and heterogeneous 

variance. The fundamental model for analyses of variance was based on the assumptions of fixed 

effects and independent observations of equal variance while the authors continued to revisit the 

model and attempted to normalize the data, they found inexplicable variance coming from the 

panelists. The study concluded with the authors suggestion that more complicated models for the 

analyses of variance were required, especially the mixed models, but were not considered in 

detail because nearly all the unexplainable interactions could be reduced to a level of 

insignificance by omitting one aberrant taster or outlier (Ough et al. 1961).  
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 The middle and early sixties of wine sensory analysis is led by a group of scientists and 

mathematicians in California. In 1966, this team of scientists and mathematicians published a 

paper concerning the predictability and grouping of sensory scores. In this study, they attempted 

to relate analytical scores to the sensory scores of four expert tasters. The analytical 

determinations included total acidity, volatile acidity, pH, extract, reducing sugar, ethyl alcohol, 

tannin, and color. The sensory test included an additional variable as the average score for all 

four judges. Thus, there were thirteen determinations on each wine, eight analytic, and five 

sensory (Baker et al. 1966). The results of this study reported a low predictability between 

chemical and sensory measurements, with high variation among wine vintages. The sensorial 

response was increasingly complex when they examined the interrelations among chemical and 

sensory determinations. The researchers also found distinct peaks among the correlation 

coefficients which influenced wine groupings, and interrelationships such as low-alcohol high-

acid and high-alcohol low-acid wines. As shown in this study, grouping variables and 

multivariate analysis of categorical variables provided more insight into the predictability of the 

complex system. However, sensory analysis testing in wine still had a long way to go. 

  Over the next decade more and more scientists looked to sensory analysis when trying to 

describe and qualify wine character. In 1972, an article titled Recent Advances in Enology is co-

authored by Amerine. In this review, a perceptual shift to how sensory analysis was perceived is 

noted. No longer were the tests simple ANOVA procedures meant to reveal statistical 

significance. At this point, ranking procedures were employed to assist in the classification of 

wines at an international judging (Amerine et al. 1972). This critical review states, “Statistical 

analysis of sensory evaluations of wine has been an American monopoly until recently.” German 
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methods for sensory evaluation were developed and mentioned in the aforementioned review. 

The seventies illustrated a large increase in sensory studies of wine character.  

 Washington State University also began publishing wine sensory research around this 

time. In 1974 they published, “A Summary of Experimental Testing of Grape Varieties for Wine 

in Washington”(Carter et al. 1974). They used the same methods from the article in Hilgardia in 

1961. One year later, California scientist Vernon Singleton wrote about the importance of using 

twelve expert tasters and the verification of data acquired from South African wines. In this 

study, researchers used a ten point scale for variables labeled: Desirable Aroma, and 

Astringency. They also use a twenty point scale for a grouped “quality” variable. Comment 

sections were also provided for the panelists, thus giving the researchers valuable insight into the 

score the panelists chose. The researchers utilized ANOVA to analyze the grouped variables and 

attempted to minimize panelist variance by reducing outliers through the use of expert panelists 

(Singleton et al. 1975). They used the Duncan’s multiple range test thus performing multiple 

comparisons of the grouped variables (Duncan 1955). One of the qualities of this test, a 

modification of the t-test, is to protect against false negative errors at the expense of an increased 

risk for false positives.  The scientists included in their discussion that omitting particular 

samples increased the correlation coefficient or his model fitness from less than .50 to .55 or 

55%. This meant just over half of his points were in the bounds of his statistically relevant union 

and illustrated a lack of fitness and apparent deviation from a linear model even after removing 

the outliers.  

 Wine sensory scientists seeking to use parabolic models possessing great fitness have 

been questionable since the earliest days of ANOVA when Scheffé designed the original 

construct. A respectful regard of the assumptions made is paramount to providing valuable 
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insight into the analysis of sensory data. Attempts to reduce variance has been done in several 

ways. This was done by increasing the homogeneity of the scores presented by the panelists, 

eliminating erroneous samples, training expert panelists, and modifying the bounds of the 

statistical test. Finding ways to find models which fit the data better while respecting the 

assumptions of the model became a top priority for the scientists. One of the most intriguing 

aspects of fitting these early models included a discussion of predictability where the authors 

state no single factor is likely an indicator of maturity, and therefore of quality (Amerine et al. 

1972). Again the conclusions coincided with a 1966 discussion, “Wine quality cannot be 

predicted from linear multivariate function of routine wine analyses using wines without 

distinctive varietal characteristics.” (Baker et al. 1966). The conclusions again pointed to the 

selected variables either as unimportant or the interrelationships between variables were of 

greater importance to the prediction of wine quality.  

 Later in 1973, scientists divided correlation of flavor with non-sensory data into two 

categories known as causal and predictive (Noble 1975) (Dravnieks et al. 1973). The causal 

approach was an attempt to identify and correlate compounds actually responsible for the 

particular sensory response under investigation. This approach had proven to be successful in 

model or very simple mixtures (Dravnieks et al. 1973). Interaction phenomena such as 

enhancement, masking and synergism in complex mixtures made the causal approach difficult 

(Dravnieks et al. 1973). The primary statistical method for locating indicators was, at this point, 

a stepwise regression analysis (Gianturco et al. 1974), (Hoff et al. 1975), (Moll et al. 1974). 

Much progress was made in the seventies in a search for predictive character using stepwise 

regression.  
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Then, in 1978, researchers attempted to predict panel preference for Zinfandel wine from 

analytical data (Ough et al. 1978). The wines were approximately nine months old at the time of 

preference evaluation. The crop level treatments included various levels of thinning and picking 

with a ripeness differences. Panelists were all enology students in their early twenties. Only three 

of them were female. The panelists received 2 days of training. They were asked to evaluate the 

wines on five scorecards, one each of aroma intensity, aroma preference, overall preference, taste 

intensity and taste preference. These rating cards utilized a 128 mm long line scale. The 

experiment used a randomized block design and a reference wine was used to minimize day to 

day variation. Each panelist replicated the aroma and flavor ratings three times and the taste 

ratings twice. Stepwise regression was used to develop the desired prediction equations (Dixon 

1974). Then, analysis of variance for mean ratings of individual lots were made. The study 

illustrated that an individual wine could be identified correctly by the panelists 70% of the time. 

The panelist responses indicated significant differences in wine quality due to the treatment 

imposed. The researchers concluded the use of analytical data to predict wine quality was a real 

possibility although much more work would be required.  

Using PCA in Wine Sensory Science 

 This work took an interesting turn in the eighties. During this decade, sensory scientists 

sought to solve problems arising from the assumptions of ANOVA, co-linearity, and 

heterogeneous variation by using more advanced mathematical methods. The results represented 

a closer look at the data and how relationships appear geometrically through the use of multiple 

dimensions and their relationships with the help of a rotational matrix while maximizing portions 

of sample variance. This decade illustrated the incorporation of principal component analysis 

(PCA) into the applied wine sensory science. Two researchers authored a paper in 1989 where 
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they analyzed multivariate data using principal component analysis and canonical variate 

analysis (CVA). According to the authors, these methods were the most appropriate for 

examining relationships among variables and cases in which the data had a high ratio of between 

sample to within sample variance (Heymann et al. 1989).  

This was not the first time PCA was used to analyze wine chemical data. It had also been 

performed to examine wine chemical data (Schaefer et al. 1983) and wine sensory data 

(Guignard et al. 1987, Heymann et al. 1987, Noble et al. 1987). It also was used in 1980 to 

analyze the sensory and chemical data of 40 Pinot noir wines. Here, researchers used PCA to 

investigate the correlations between chemical and sensory measurements (Kwan et al. 1980). 

CVA also is applied to interpret wine sensory data (Noble et al. 1984). Major differences exist 

between these two multivariate statistical techniques. PCA uses linear combinations of 

derivations from the original variables to explain the maximum amount of variation in the data 

set and are orthogonal or residing in a square matrix (Heymann et al. 1989). These principal 

components summarized the data with as little loss of information as possible (Mardia et al. 

1979). Canonical Variate Analysis used linear combinations of the original variables selected to 

maximize the ratio of the between sample to the within sample variance. Canonical variates are 

not necessarily orthogonal and the actual angle between the canonical variates can be calculated 

(Tatsuoka 1971).  

In PCA, several tests are used to determine the importance of the principal components 

indicating which number should be retained. These tests include the scree plot (Cattell 1966), the 

Kaiser criterion (Kaiser 1960), and the interpretability of the axes (Gnanadesikan et al. 1969). 

These tests were later found to provide insight into the system but not providing rigorous 

statistical tests of the significance of the axes (Heymann et al. 1989). In CVA, the significance of 
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the axes was illustrated with Bartlett’s test (Green 1978, Chatfield et al. 1980). Also, confidence 

intervals were used to illustrate statistical significance among individuals (Chatfield et al. 1980). 

The study in 1989 by Heymann and Noble analyzed twenty-one California Cabernet 

Sauvignon wines from four viticultural areas and rated them using descriptive analysis by 

thirteen trained judges. Eleven flavor terms were used in a PCA vs. CVA analysis. Fifty-eight 

California Chardonnay wines from three vintages were evaluated by ten trained judges, 

providing seven terms for PCA and CVA analysis. In both studies, each wine was evaluated 

twice by each judge. The researchers used a combination of FORTRAN programming and SAS 

for data mining. They concluded specific advantages to using PCA and CVA exist. Advantages 

of PCA included: its packaged into statistics packages as a tool for examining the relationships 

of a large number of variables and observe overall patterns in the data. Possible disadvantages of 

PCA include the lack of a statistical test to determine the number of important dimensions, as 

well as lack of a method to determine whether significant differences exist among the positions 

of the treatments in the sample space. However, the authors note CVA has an asset; the ability to 

determine the number of significant dimensions and to calculate confidence intervals for the 

treatments.  

Statistical Learning Theory and Datamining 

An interesting new way to examine problems with prediction now relies on statistical 

learning theory and machine learning. These techniques illustrated great progress in the nineties 

alongside what some might consider the beginning of artificial intelligence. The development of 

machine learning took a forefront in analysis with Singular Value Decomposition (SVD), 

Support Vector Machines (SVM), Artificial Neural Networks (ANN), Swarm Optimization, and 

Genetic Pare-to. These new models should be considered by enologists, analytical chemists, and 
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sensory scientists as simple yet powerful new tools to be kept in mind when approaching sensory 

analysis.  

Artificial neural nets were compared to results obtained by analysis with conventional 

Bayes discrimination analysis and Fisher discrimination methods (Sun et al. 1997). In this wine 

study, Principal component analysis was performed based on Singular Value Decomposition. 

Cluster analysis based on the Ward’s method is presented and followed by Bayes discrimination 

analysis and Fisher discrimination analysis. A leave one out scenario was used to increase the 

chances of finding and eliminating an outlier. The researchers concluded that principal 

component analysis and cluster analysis may be used to explore the rough structure of wine data, 

but neither method can completely recover the entire information included in the data set. The 

artificial neural network illustrated a discrimination rate of 100% for both training and prediction 

with the jackknife leave one out procedure due to its adaptability. Bayes stepwise discrimination 

method gave discrimination rates of 99.4% and 98.8% for training and prediction, respectively. 

Fisher’s discrimination method provided discrimination rates of 95.3% and 91.8% for training 

and prediction, respectively. The researchers concluded the use of an artificial neural network 

requires the longest amount of time to compute among all the methods. Also, both Bayes 

stepwise discrimination analysis method and the Fisher discrimination method can also be 

applied with slightly smaller discrimination rates, but with a shorter time to compute as 

compared with the neural networks.  

The turn of the century represented major advances in analytical chemistry, computer 

science, and engineering. Using electronic noses and tongues, flavors, aromas and taste 

compounds can now be detected by machine. The persistent upgrades and augmentations of gas 

chromatography and mass spectrometry also illustrated greater ease of use and better separation 
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of homogeneous mixtures. Traditional methods were updated with current head-space analysis 

research methods for capturing nearly volatile compounds associated with taste and flavor 

corresponding with several decades of studies (Stephan et al. 2000).  Electronic noses consisting 

of sensor arrays use metal oxide thermal sensors, metal oxide conductimetric sensors, or bilayer 

lipid membrane coated mass sensors (Barnett et al. 1993, Kohl 1996, Mitrovics et al. 1997). E-

tongues possessing voltammetric sensors on optimized sensor arrays were used to evaluate the 

complete antioxidant profile of red wines (Cetó et al. 2014, Cetó et al. 2014). Most recently, 

these analytical machines which possess a capability to produce large amounts of data were 

being coupled with kernels designed for feature selection and feature extraction. These kernels 

were powered by machine learning predictive algorithms.  

 In 2001, a study illustrating the use of artificial neural networks in regards to wine 

sensory science was published. This study mentioned the need to develop methods which would 

harness the power of artificial neural networks (Ferrier et al. 2001). The use of statistical learning 

theory in sensory science also coincided with an increase in the use of multivariate statistics. 

Multivariate statistics provided more insight into complex mixtures than univariate statistical 

methods such as simple linear regression. As instrumental analysis became more and more 

sensitive, capable of identifying and quantifying hundreds of compounds, pre-processing 

methods and data reduction became a necessity for those looking to acquire a glimpse at the 

larger picture. Partial Least Squares Regression became popular as increasingly large sets 

became apparent to the sensory scientists. While data reduction became a necessity, techniques 

became more robust and meaningful when a large number of cases were used. In trained sensory 

analysis, the labor involved to analyze 5 or 10 wines was enormous. A review article mentioned, 
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most sensory studies do not use many samples to model relationships between sensory and 

instrumental data (Noble et al. 2002).  

 Partial least squares regression models continued to be developed during this time of the 

aforementioned review thus illustrating the predictability of red wine aroma properties from 

aroma chemical composition. In an article published in 2003, partial least squares was used to 

predict aroma properties from ionic signatures, with resulting correlation coefficients of 0.81 or 

81% accuracy of prediction for the models (Aznar et al. 2003). The aromatic sensory 

characteristics of 57 Spanish aged red wines were determined by 51 experts inside the wine 

industry. The frequency of descriptors was used as a measurement of intensity. Gas 

chromatography mass spectrometry and flame ionization detectors were used to correlate 

descriptor intensity and the analytical machine data. Finding ways to incorporate least squares 

regression into data sets was deemed an intelligent way of looking at correlated vector spaces.  

 During this part of the early century, wine sensory scientists continued to look for insight 

into predictive models. In 2004, additional analytical methods were developed using 

chemometric principles like ionic signatures to drive characterization. These signatures were 

then loaded into artificial neural networks for classification. In one case, the wines were 

recognized 100% of the time and correctly predicted 78% of the time (Penza et al. 2004). The 

scientists concluded the results were significant and provided further insight to wine sensory 

scientists seeking to develop ways of distinguishing region specific identities through the use of 

artificial neural networks.  

  Up to this point, the use of multivariate statistics or multifactorial analysis has gone hand 

in hand or was often compared to partial least squares analysis, linear regression models, and 

principal component analysis. In 2009, another study was performed to predict wine character. 
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This study underlies an important principle for wine sensory scientists. As datasets became larger 

and more complex, there became many possible strategies for study. This allowed for data 

mining approaches to predict preference based on easily available analytical tests. The study in 

2009 acquired a large data set of white and red wine samples from Portugal and applied three 

regression techniques under a computationally efficient procedure which performed 

simultaneous variable and model selection (Cortez et al. 2009). The support vector machine 

achieved promising results, outperforming the multiple regression and artificial neural network 

methods. The researchers concluded that such a model is useful to support the oenologist wine 

tasting evaluations and improve wine production. Furthermore, similar techniques can help in 

targeting markets by modelling consumer tastes from niche markets.  

 Support vector machines assisted the sensory scientist in understanding the boundaries of 

the product space. Knowing if two or more panelists share a theoretical space in terms of 

preference or perception is important because it can illustrate covariance and give insight into 

possible sources of variance. In one study, scientists created confidence intervals among the 

panelists using multiple factor analysis. In order to do this, they incorporated parametric 

bootstrapping (Dehlholm et al. 2012).  Bootstrapping uses random sampling with replacement. 

This allowed the scientist to view measures of accuracy. Similar to confidence bounds found in 

statistics in a variety of tests or metrics, the parametric bootstrapping method assigned 

confidence ellipses to the data already analyzed using multiple factor analysis.  The researchers 

use R as their programming environment. They found this approach was suitable for generating 

an overview of product confidence intervals and also applicable for data obtained from ‘one 

repetition’ evaluations. Furthermore, they concluded bootstrapping is a convenient way to get an 
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overview of variations in different studies performed on the same set of products and the 

graphical display of confidence ellipses eased interpretation and communication of results.  

 Later in 2012, newer datamining methods were incorporated where sensory scientists use 

genetic programming, statistical techniques, and swarm optimization. Genetic programming 

models were first eluded to for wine sensory research in 2001 in a discussion on artificial neural 

networks (Vlassides et al. 2001). Swarm optimization is known to trap into local minima similar 

to support vector machines. Swarm optimization models give valuable insight into vector fields 

and the subspaces of data sets because when an individual is close to the optimal particle, its 

velocity will approximate to zero (Leifu Gao 2009). In the study in 2012 researchers attempted to 

datamine sensory evaluation data through extreme sparsity and a large variation in responses 

from panelists (Veeramachaneni et al. 2012). Their approach employed genetic programming 

(symbolic regression) and ensemble methods in order to generate multiple diverse explanations 

of assessor liking preferences with confidence information. Using the produced ensembles to 

unobserved regions of the flavor space, statistical techniques were used to extrapolate and then 

segment the panelists into groups possessing a propensity to like flavors. Finally, a two-objective 

swarm optimization was applied to identify flavors which were well and consistently liked. The 

researchers defined a new space which respects the evidence that the response and explanatory 

variable relationship differs among panelists and exploits rather than inaccurately averages the 

differences. This method postponed decision making regarding a prediction and decision 

boundary until the end of the analysis, an approach that was not used by historical modelling 

approaches. Finally, as macro-level behavior emerged and more was known about the panelists, 

decision boundaries were rationally imposed on the probability space, allowing for segmentation. 

The researchers concluded an affirmation of genetic programming symbolic regression methods 
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which has since evolved into a mature field. In this case, genetic programming allowed the 

researcher an ability to decompose high variation into a sequence of solvable problems.  

The most recent research on predicting sensory character from wines includes the use of 

statistics, linear algebra, and machine learning. Multivariate methods recently developed 

illustrate classification of wines based on multiple variables to create signatures and how they 

can be used to infer properties found in wines from a particular region (Shanmuganathan et al. 

2013, Selih et al. 2014). Linear algebra constructs give sensory scientists insight into 

discriminating classifiers of set spaces (Wang et al. 2014). Machine learning allows sensory 

scientists not only the ability to discriminate signatures but also to predict complete products 

based on multiple signatures coming from analytical machines (Cetó et al. 2014, Gómez-Meire 

et al. 2014, Hosu et al. 2014, Selih et al. 2014, Tao et al. 2014, Wang et al. 2014). The power of 

machine learning, analytical machines, and sensory sciences is beginning to take a strong foot 

hold in applied food sciences. Datamining and mathematics serve as principles for understanding 

problems in complex data sets and provide insight through the use of predictive algorithms. In 

this study, we attempt to incorporate machine learning, prediction, and linear algebra constructs 

to provide ways for wine sensory scientists to find truths about their datasets without relying on 

assumptions.
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CHAPTER III 

SINGULAR VALUE DECOMPOSITION 

Introduction to Singular Value Decomposition and Our Data 

 The singular value decomposition (SVD) is a factorization of a matrix into a product of 

matrices (Equation 1). The decomposition of the original matrix (𝐌) is a product of an 

orthogonal matrix (𝐔), a non-negative diagonal matrix (𝚺), and the transpose of a second 

orthogonal matrix (𝐕∗). The SVD finds directions along which matrix multiplication is 

equivalent to scalar multiplication but has greater generality than eigenvector-eigenvalue 

decompositions since the original matrix need not be square.  

𝐌 = 𝐔𝚺𝐕∗      Eq. 1 

In two dimensions, the decomposition is visualized in three parts (Figure 1). The first part 

is an initial rotation of the domain of 𝐌. The second part is a direction dependent scaling of 

space using a diagonal matrix. The third part is a second rotation. The process is illustrated most 

simply in a 2 × 2 matrix.  

 

Figure 1: SVD 
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This experiment used Singular Value Decomposition (SVD) to predict how well each 

measured sensory attribute (n=20) can be predicted by concentrations of ethanol (n=6), tannin 

(n=3), or fructose (n=2). First, two matrices were imported from the previous study into Matlab 

version 2015a (Mathworks, Natick, MA).  One matrix, named 𝐀, contained attribute intensity 

ratings (864x20). A second matrix, named 𝐂, contained concentrations of ethanol, tannin, 

fructose, and a column of ones used as a bias constant (864x4). These matrices had individual 

panelist data extracted from them. SVD was then computed for each of the twelve panelists. 𝐂𝒊 , 

where i was used as an index value and refers to the panelist number or individual is simply the 

72 rows of 𝐂 that came from panelist i. Similarly, 𝐀𝒊 is the 72 × 20 matrix that corresponds to 

the 72 rows in 𝐀 that come from panelist i. 

Computing the SVD of 𝐂𝒊, 𝐂𝒊 = 𝐔𝒊𝚺𝒊𝐕𝒊
∗ where 𝐔𝒊, is a 72 × 72 real matrix where the 72 

columns are the left singular vectors. 𝚺𝒊, is a 72 × 4 rectangular diagonal matrix with non-

negative real numbers on the diagonal known as the singular values of 𝐂𝒊  and represented a 

scaling of the data. Finally 𝐕𝒊
∗, is the transpose of 𝐕𝒊

∗, a 4 × 4 orthogonal matrix whose columns 

are known as the right singular vectors. 

Introduction to Subspaces and Projections 
 

 Now that the factorization is complete, a brief explanation of how it’s utilized is 

illustrated with a simple example. First, take a 3-dimensional coordinate space with x, y, and z 

coordinates. Now let’s place two vectors which both start at the origin. These vectors are named 

𝑏1and 𝑏2 (Figure 2). 
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Figure 2: Two vectors that start at the origin. 

 

  

 

 

 

 

The vectors described share a space which can be referred to as a linear subspace. The 

subspace, labelled P is the span of vectors b1 and b2 (Figure 3).  
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Figure 3: The span of two vectors 

  

 

Once the subspace has been created a new concept of projection is introduced. The 

projection of a vector v onto P is the closest point w which lies on P, the subspace created by the 

space spanned by vectors b1 and b2 (Figure 4). 
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Figure 4: The projection 

  

 

 

Finally, after creating the subspace and projecting v onto the plane spanned P an error 

vector is calculated. The error vector is (𝑣 − 𝑤) and the error is the length of this error vector. 
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This error refers to the error resulting from an attempt to approximate 𝑣 with 𝑤, which is the best 

approximation to 𝑣 in the linear subspace 𝑃. 

 

Figure 5: Error Vector 
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Methods of Analysis 

In this experiment instead of being 2 dimensional, the plane 𝑃, is a 4 dimensional plane 

that is the span of the 4 columns of 𝐂𝒊. The space in which the plane resides is 72 dimensional, 

which is the dimension of each of the column vectors which make up 𝐂𝒊.  So instead of a 2 

dimensional plane in 3 dimensional space, there exists a 4-dimensional plane in 72-dimensional 

space (𝑪𝒊). Now, one of the columns of 𝐀𝒊, which is named 𝒂 is projected onto the subspace P, 

spanned by the columns of 𝐂𝒊. The projection at 𝒂 onto P is now easily computed using the SVD 

of 𝐂𝒊. This is done in two steps.   

𝜷 = 𝐕𝒊𝚺𝒊
−𝟏𝐔𝒊

∗ ∗ 𝐀𝒊      Eq. 2 

Where 𝚺𝒊
−𝟏 is the pseudoinverse of 𝚺𝒊. Second, the projection 𝒂𝑷 computed. 

𝒂𝑷 = 𝑪𝒊𝜷                                      Eq. 3 

Note that 𝛽 has four components: the coefficients of the columns of the columns of 𝑪𝒊 

that yield the projection. They are the parameters of the optimal linear model combining ethanol, 

tannin, fructose and an offset to get a prediction of the attribute corresponding to the column 𝒂.  

 Analysis continues with the creation of an error vector. 𝐂𝒊𝜷 is the projection of 𝒂 onto the 

span of the columns of 𝐂𝒊, and 𝜷  therefore gave the best possible linear model for the attribute 

corresponding to 𝒂. This forms an error vector where the equation is listed below. 

𝒆 = 𝐂𝒊𝜷 − 𝒂      Eq. 4 

This error, represents the difference of a perceived human sensory response 𝒂 and the the 

optimal linear model using the concentrations of ethanol, tannin, fructose, and a vector of ones. 
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If the relationship between attributes and chemical composition is linear, one would expect no 

error. If there is noise in the data, the error would be commensurate with the size of this noise. 

Larger amounts of error may be the result of non-linear relationships between stimulus and 

response 

The point of this exercise was to test the hypothesis that each individual possessed a 

linear function which converts the chemical composition found in wine to the intensity of a 

perceived sensory attribute. As a measure of linearity we could use the normalized error. 

𝜺 =
‖𝒆‖𝟐

‖𝒂‖𝟐
                        Eq. 5  

In this section because we are using projections, we can also use  

𝒓 = 𝟏 − 𝜺 Eq. 6 

Which corresponds to the square of the correlation coefficient. When 𝜀 → 0 (𝑟 → 1) then 

we conclude the model is linear or very close to linear. 

Results and Discussion 

This analysis used Singular Value Decomposition and least squares to determine if a 

linear function can adequately describe the intensity rating of wine attribute from a series of 

molecular compositions. The analysis produced 240 linear predictions of 𝜷. Then we compute 

the coefficient 𝒓, which measured how well a linear model describes a sensory function.  

The sensory data coming from the panel was grouped as matching aromas and flavors 

with a final category called mouthfeel attributes. Significant research has been done on the 

shared receptors in the mouth and nose (Bakalar 2012). This physiology was found to be highly 
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positively correlated with one another in a preliminary study where SVD was performed using 

only the aromas and flavors from this dataset (Table 1). Furthermore, the sensory evaluation 

panelists performed better as a whole at producing consistent intensity ratings among 4 

mouthfeel attributes over the aromas and flavors (Figure 6).  

Upon examination of the panelists as individuals, it became apparent panelists three, six, 

and eleven contribute the most variation to the set as a whole (Figure 7). These panelists 

represent values which might be considered outliers from the group, with low amounts of linear 

fitness. While we kept these panelists in the data set, we want to briefly make note of them. 

The outliers themselves bring about an interesting conversation about why they chose 

intensity ratings which were unlike the majority of the other panelists. This could be the result of 

sensory testing bias, anosmia, or a non-linear function (Lawless et al. 1998, Stone et al. 2012) 

between the wine attribute and the chemical composition of the wine. The major problem with a 

linear approach to modelling this system lies in the suspicion that wine is a non-linear and 

dynamic system. Much of what has been found in nature is non-linear and therefore other 

approaches for modelling should be considered. In order to find better solutions for predicting 

panelist responses to the chemical composition of wine, non-linear methods must also be 

developed.  

Table 1: Trained panelist r- values from SVD Aromas and Flavors 

Caramel Earthy Floral Fruity Vegetal Spicy Sulfur Woody 

.925 .937 .936 .940 .950 .920 .887 .933 

 

 



42 
 

 

 

 

Figure 6: Attribute vs. r-value from trained panel 
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Figure 7: The range of r-values for each trained panelist 
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 The discussion of our analysis warrants a secondary discussion of the fitness of our data 

and the inclusion of additional orders of approximation. The continuation of the SVD portion of 

our experiment includes second and third order terms. Second order approximation is defined as 

a quadratic polynomial with a degree of two and is represented geometrically by a parabola. 

Third order approximation is generally referred to as a polynomial interpolation and is 

represented geometrically with a figure which looks similar to that of a chair. Performing the 

higher orders of approximation on the data which is transformed using the rules of SVD results 

in greater linear fitness from our linear model. The following illustration represents how 

approximation works with a simple sine wave, the first approximation which is simply a line 

which captures the slope of the sine function, then our third and fifth order terms which capture 

more of the sine function (Figure 8). 
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Figure 8: Approximation of a sine wave 
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 The initial dataset, which was decomposed and transformed, contained a four column 

matrix which included concentrations of ethanol, tannin, fructose, and a column of ones 

(Equation 7). When performing the second order approximation, we created a new matrix which 

included the square of each of the concentrations, the second order factors, our initial 

concentrations, and the column of ones so we can preserve our bias constant. The third order 

approximations were done in the same manner by cubing our terms, maintaining our factors, and 

retaining our initial data and the column of ones. The equations below illustrate the construction 

of the matrices used in first, second, and third order approximation. Here, C is the concentration 

matrix for the SVD, E is the concentration of Ethanol, T is the concentration of Tannin, and F is 

the concentration of Fructose. The subscripts represent the 72 values reported by each panelist.  

The first order approximation matrix:  

𝑪 = [
𝑬𝟏 𝑻𝟏 𝑭𝟏 𝟏𝟏

⋮ ⋮ ⋮ ⋮
𝑬𝟕𝟐 𝑻𝟕𝟐 𝑭𝟕𝟐 𝟏𝟕𝟐

]           Eq. 7 

 

The second order approximation matrix (Equation 8):  

𝐶 = [
(𝐸1

2) (𝑇1
2) (𝐹1

2) (𝐸1 ⋅ 𝑇1) (𝐸1 ⋅ 𝐹1) (𝑇1 ⋅ 𝐹1) (𝐸1) (𝑇1) (𝐹1) (11)
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

(𝐸72
2 ) (𝑇72

2 ) (𝐹72
2 ) (𝐸72 ⋅ 𝑇72) (𝐸72 ⋅ 𝐹72) (𝑇72 ⋅ 𝐹72) (𝐸72) (𝑇72) (𝐹72) (172)

] 

Note that instead of a subspace spanning four columns, now the subspace is spanned by ten.  
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The third order approximation matrix (Equation 9): 

𝐶 = [
(𝐸1

3) (𝑇1
3) (𝐹1

3) (𝐸1
2 ⋅ 𝑇1) (𝐸1

2 ⋅ 𝐹1) (𝑇1
2 ⋅ 𝐸1) (𝑇1

2 ⋅ 𝐹1) (𝐹1
2 ⋅ 𝐸1) (𝐹1

2 ⋅ 𝑇1) (𝐸1 ⋅ 𝑇1 ⋅ 𝐹1) (𝐸1
2) (𝑇1

2) (𝐹1
2) (𝐸1 ⋅ 𝑇1) (𝐸1 ⋅ 𝐹1) (𝑇1 ⋅ 𝐹1) (𝐸1) (𝑇1) (𝐹1) (11)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
(𝐸72

3 ) (𝑇72
3 ) (𝐹72

3 ) (𝐸72
2 ⋅ 𝑇72) (𝐸72

2 ⋅ 𝐹72) (𝑇72
2 ⋅ 𝐸72) (𝑇72

2 ⋅ 𝐹72) (𝐹72
2 ⋅ 𝐸72) (𝐹72

2 ⋅ 𝑇72) (𝐸72 ⋅ 𝑇72 ⋅ 𝐹72) (𝐸72
2 ) (𝑇72

2 ) (𝐹72
2 ) (𝐸72 ⋅ 𝑇72) (𝐸72 ⋅ 𝐹72) (𝑇72 ⋅ 𝐹72) (𝐸72) (𝑇72) (𝐹72) (172)

] 

Note that instead of a subspace spanning ten columns, now the subspace is spanned by twenty. 

Performing the higher orders of approximation on the data which is transformed using the rules 

of SVD results in greater linear fitness from our linear model. The mean r-squared improvement 

is nearly 2% in the third order approximation and around 1% in the second order approximation. 

The mean r-squared improvement is between 2% and 5% among the panelist outliers.  The figure 

on the top of the next page illustrates the improvement of the panelist r values among each of the 

twenty attributes. 
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Figure 9: Improving range of r-values for each panelist 
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Conclusions  

 In the latter portion of our discussion, we followed the linear SVD portion with a more in-

depth examination using higher orders of approximation. The once linear regression model is 

now a non-linear model. Using higher orders of approximation meant that we expected to see an 

increase in model fitness. Our hypothesis was correct in this case as we saw improvement of our 

r-squared values. The non-linear methods are able to increase fitness by capturing more of the 

data, thereby increasing the r-square value. This method is preferred as we gain model 

improvement while maintaining our panelist numbers.  We continue to work with non-linear 

models in the next section where we use Support Vector Machines, an application of statistical 

learning theory.  
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CHAPTER IV 

SUPPORT VECTOR MACHINES  

 

Introduction to Support Vector Machines 

 

 Support Vector Machines (SVM) is a supervised learning model or machine learning 

method designed to classify data. To illustrate how SVM works, we first take a set of training 

examples, each marked as belonging to one of two categories. The SVM training algorithm 

builds a model that assigns new examples into one category or the other. In addition to 

performing linear classification, SVM can perform a non-linear classification using kernels 

which implicitly map the inputs into high-dimensional feature spaces. SVM relies on the use of 

boundaries and the creation of a decision rule. Here, we follow Winston’s exposition closely 

(Vapnik 1998, Winston 2010). 

 

  

 
 

Figure 10: Creating a decision rule 
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 The initial problem is determining the separable distance between the two classes either 

(+) or (-) in our case (Figure 10). This can be done by first creating a vector which is 

perpendicular to the street; �⃗⃗� . Using an unknown we want to know if a said point is on the right 

side or left side of our street (Figure 10). We can do this simply multiplying the two vectors in 

Equation 10. 

 

�⃗⃗� ⋅ �⃗� ≥ 𝑐     Eq. 10  

or  �⃗⃗� ⋅ �⃗� + 𝑏 ≥ 0 𝑤ℎ𝑒𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑤ℎ𝑒𝑟𝑒 𝑐 =  −𝑏 

 Performing this simple multiplication has given us a decision rule where we illustrate the 

location of our street but we also need constraints for this rule. We define our constraints for the 

decision rule in Equation 11.  

�⃗⃗� ⋅ 𝑥 + 𝑏 ≥ 1       
            Eq. 11 

�⃗⃗� ⋅ 𝑥 + 𝑏 ≤ −1 
  

The addition of another variable makes things more convenient. 

 

𝑦𝑖 = +1 𝑓𝑜𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 
 

𝑦𝑖 = −1 𝑓𝑜𝑟 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 
 

Finally, we have our constraints and have defined the gutter in Equation 12.  

 

𝑦𝑖(𝑥 𝑖�⃗⃗� + 𝑏) ≥ 1  
 

𝑦𝑖(𝑥 𝑖�⃗⃗� 𝑖 + 𝑏) − 1    Eq. 12 
 

𝑤ℎ𝑒𝑟𝑒 𝑦𝑖(𝑥 𝑖�⃗⃗� + 𝑏) − 1 = 0 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑢𝑡𝑡𝑒𝑟 
 

Now, we want to explain the difference between the gutters as seen in Figure 11. This can be 

done with Equation 13.  
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Figure 11: Finding the width of the street 

𝑤𝑖𝑑𝑡ℎ = (𝑥 (+) − 𝑥 (−)) ⋅
�⃗⃗� 

‖𝑤‖
    Eq. 13 

 

Now the two gutters are defined and we have determined the width of the street.  

 

�⃗⃗� ⋅ 𝑥 (+) = 1 − 𝑏 

            Eq. 14 

�⃗⃗� ⋅ (−𝑥 (−)) = 1 + 𝑏 

This is illustrated by our gutter constraint and a reiteration of Equation 14. 

𝑦𝑖(𝑥 𝑖�⃗⃗� + 𝑏) − 1 = 0 

𝑥 𝑖�⃗⃗� = 1 − 𝑏 

𝑥 𝑖(−�⃗⃗� ) = 1 + 𝑏 

𝑦𝑖 = 1  

Therefore using, 

𝑦𝑖(𝑥 𝑖�⃗⃗� + 𝑏) − 1 = 0 

𝑥 (+) − 𝑥 (−)

1
⋅

�⃗⃗� 

‖𝑤‖
=

2

‖𝑤‖
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The width of the street is (
2

‖𝑤‖
); so we maximize this finding the widest part of the street. 

max (
2

‖𝑤‖
)~max (

1

‖𝑤‖
)~ min(‖𝑤‖)~min

1

2
‖𝑤‖2 

Then utilize a LaGrangian to find the maxima.  

ℒ =
1

2
‖�⃗⃗� ‖2 − ∑ [𝑦𝑖(𝑥 𝑖�⃗⃗� + 𝑏) − 1]

𝛼𝑖

 

ℒ =
1

2
(∑ 𝑦𝑖𝑥 𝑖

𝛼𝑖

) ⋅ (∑ 𝑦𝑗𝑥 𝑗
𝛼𝑗

) − (∑ 𝑦𝑖𝑥𝑖
𝛼𝑖

) ⋅ (∑ 𝑦𝑗𝑥𝑗
𝛼𝑗

) − (∑ 𝑦𝑖𝑏
𝛼𝑖

) + (∑𝛼𝑖) 

ℒ = ∑𝛼𝑖 −
1

2
∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖 ⋅ 𝑥𝑗                 Eq. 15 

Going back to the decision rule illustrates that the maximization depends on the sample 

vectors. The simplicity of this optimization is that it depends on simple dot products of pairs of 

samples. 

∑𝛼𝑖𝑦𝑖𝑥 𝑖 ⋅ �⃗� + 𝑏 ≥ 0 𝑤ℎ𝑒𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒    Eq. 16 

 

Thus, one can see the decision rule only depends on the dot product of those sample 

vectors and the unknown. This means there is a total dependence of all the math on the dot 

products. However, problems arise when the set is not linearly separable. This problem is later 

solved by Vapnik when he realized the transformation relies on the dot products and can be 

transformed into any space using a solution known as the kernel trick.  

Lastly, if we call a transformation 𝜙(𝑥 ), all we need are the dot products 𝜙(𝑥𝑖) ⋅  𝜙(𝑦𝑖) 

to find the maximum. Where K is a kernel function: 

 

𝐾(𝑥𝑖, 𝑥𝑗) = 𝜙(𝑥𝑖) ⋅ 𝜙(𝑥𝑗)   Eq. 17  
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One of the most frequently used kernel functions, the Radial Basis Function (RBF): 

𝐾(𝑥𝑖, 𝑥𝑗) =  𝑒
−( 

‖𝑥𝑖−𝑥𝑗‖

𝜎
)
   Eq. 18 

Introduction to Support Vector Machines Regression 

 We can see how Support Vector Machines can classify groups of data together and define 

separation by using a hyperplane. Support Vector Machines operate using a model which 

depends only on a subset of the training data, because the cost function for building the model 

does not care about training points which lie beyond the margin. The model for Support Vector 

Machines-Regression (SVR) also only uses a subset of the training data, because the cost 

function for building the model ignores any training data close to the model prediction. Using the 

same model as SVM but instead of maximizing the width of the street we now minimize it. This 

simply means solving the problem in respect to minimizing the width of the street: 

 

 In order to do this, let’s consider a set of training points, {(𝒙1, 𝑧1),… , (𝒙𝑙, 𝑧𝑙)}, where 

𝒙𝑖 ∈  ℝ𝑛 is a feature vector and 𝑧𝑖 ∈ ℝ1 is the target output. Under given parameters 𝐶 > 0 and 

𝜖 > 0, the standard form of support vector regression (Vapnik 1998) 

𝑚𝑖𝑛
𝑤,𝑏,𝜉,𝜉∗

 
1

2
𝒘𝑇𝒘 + 𝐶 ∑𝜉𝑖 + 𝐶 ∑𝜉𝑖

∗

𝑙

𝑖=1

𝑙

𝑖=1

 

subject to 𝒘𝑇𝜙(𝒙𝑖) + 𝑏 − 𝑧𝑖 ≤  𝜖 + 𝜉𝑖, 

                   𝒛𝑖 − 𝒘𝑇𝜙(𝒙𝑖) − 𝑏 ≤  𝜖 + 𝜉𝑖
∗, 

                                𝜉𝑖, 𝜉𝑖
∗ ≥ 0, 𝑖 = 1,… , 𝑙.   

The dual problem is defined in LIBSVM (Chang 2011) 
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𝑚𝑖𝑛 
𝛼,𝛼∗

 
1

2
(𝜶 − 𝜶∗)𝑇𝑄(𝜶 − 𝜶∗) + 𝜖 ∑(𝜶 + 𝜶∗) + ∑𝑧𝑖(𝜶𝒊 − 𝜶𝒊

∗)

𝑙

𝑖=1

𝑙

𝑖=1

 

subject to 𝒆𝑇(𝜶 − 𝜶∗) = 0, 

                   0 ≤ 𝛼𝑖 , 𝛼𝑖
∗ ≤ 𝐶, 𝑖 = 1, … , 𝑙,  

where 𝑄𝑖𝑗 = 𝐾(𝒙𝑖, 𝒙𝑗) ≡  𝜙(𝒙𝑖)
𝑇𝜙(𝒙𝑗) 

 

After solving this problem, the approximate function is 

 

∑ 𝑧𝑖(−𝜶𝒊 + 𝜶𝒊
∗)𝑙

𝑖=1 𝐾(𝒙𝑖, 𝒙) + 𝑏  Eq. 19 

 

Methods of Analysis 

In this study, we use LIBSVM, a model written for use with Matlab to perform SVR-ϵ on 

a dataset which was previously analyzed by transformation using Singular Value Decomposition 

(SVD). This experiment was designed mainly to examine how a statistical learning method 

would compare with a matrix factorization method. As in the case of the previous study, we 

examined how well each measured sensory attribute (n=20) could be correctly predicted by 

concentrations of ethanol (n=6), tannin (n=3), and fructose (n=2). First, two matrices were 

imported from the previous study into Matlab version 2015a (Mathworks, Natick, MA). One 

matrix named A, contained attribute intensity ratings (864x20). A second matrix, named C, 

contained concentrations of ethanol, tannin, fructose, and a column of ones (864x4) which was 

utilized as a bias constant in the SVD study previously performed. These matrices had individual 

panelist data extracted from them which was scaled from 0 to 1. Each panelist dataset underwent 

the same training and testing procedure which included a 72-fold cross validation and parameter 

search which optimized the model by minimizing error.  
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To begin, we scaled matrices A and C from zero to one. Then, we trained the SVR on 

each of the attribute ratings provided by the panelists. For every attribute there was a 

corresponding instance matrix comprised of varying concentrations of ethanol, tannin, and 

fructose which followed the rules of randomized block design in human sensory testing. Our 

model was trained using the svmtrain function in Matlab and our code can be found in the 

Appendix.  

The training was performed on each of the panelist’s datasets and the model was then 

tested for accuracy. In this way, we trained on the entire set of data then tested each panelist 

measurement with our model using the function svmpredict (Appendix). We tested each 

measurement giving us an output of a predicted value from the model and the measured value 

which was already provided by the actual panelist measurement giving us a total of 240 

predicted values. We calculated our correlation coefficient (R2) by taking the square of our dot 

products (Equation 20) 

𝑅2 = 1 − [(
�̂�

‖�̂�‖
) ⋅ (

𝑦

‖𝑦‖
)]

2

      Eq. 20 

We computed the correlation coefficient of our model in conjunction with a parameter 

optimization of the SVR-ϵ. The parameter optimization was performed over a range published 

by the authors of LIBSVM. The parameters we optimize are explicit to the radial basis function 

kernel and include 𝐶, 𝛾, and ϵ. These data dependent kernel parameters are tuned using grid 

search methodology outlined in the supporting documentation for LIBSVM and through using a 

series of program loops which we embedded into our code (Appendix)(Chang 2011). 
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Results and Discussion 

This experiment was designed to test the hypothesis that each individual’s function which 

converts components in wine into sensory intensities is better predicted by statistical learning 

algorithm (SVR) over a matrix factorization method (SVD). Our results indicate that while the 

parameter search and optimization of SVR appears promising and could be better tuned, the SVR 

model did not outperform our SVD model. During training we noticed early convergence of the 

model to small values of 𝛾, and ϵ which might indicate an under fitting model. Continued 

progress on model optimization will most certainly improve our results. Our SVR model proved 

to be less accurate than our SVD model (Figure 12). 

 

Figure 12: SVD vs. SVR incidence of error  
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We generally see the SVR does not work as well as the SVD. When we look at each 

panelist individually, we see an overall underfitting of the SVR model (Figure 13). 

 

Figure 13: SVD vs. SVR for each panelist 

Conclusions 

This experiment was designed to test the ability of two regression models in the 

predicting of wine aroma, flavors, and mouthfeel. While we found the SVD model outperforms 

the SVR model, both models perform reasonably well in most cases. Generally speaking, the 

models can accurately predict aromas, flavors, and mouthfeel intensities as a direct result of 

concentrations of ethanol, tannin, and fructose over 80% of the time. On some occasions we see 

outlying panelists. These panelists behave erratically compared to the panel as a whole or they 

exhibit a bias in their responses. SVD and SVR models illustrated difficulty in predicting the 

responses of these panelists. While SVR did not outperform SVD in this particular study, the 

promise of SVR is great and relies on a more in depth parameter study to achieve optimal results. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

The overall research objective was to examine the predictability of perceived sensory 

response based on the concentrations of ethanol, tannin, and fructose. We used two methods 

commonly found in statistics and statistical learning theory to illustrate how we can predict the 

panelist response in the present data set based on the composition of the model wine. SVD of 

aromas vs. flavors illustrated we could predict one from the other and vice versa over 90% of the 

time. This illustrates high correlation among the shared receptors in the nose and the mouth from 

sensory feedback we received from our trained panel as intensity ratings. For this data set, we 

also saw the presence of three major outlying panelists in our SVD study. These were panelists 

three, six, and eleven. We noticed a dramatic increase in the predictability of the system by 

removing the outlying panelists. However, these results are not reported due to a decision to keep 

the outliers as contributors to the group but labelling them as such for additional study and closer 

observation. The SVM portion of the experiment revealed that the outliers gave bad training data 

to the machine and therefore may have reduced the machine’s ability to predict taste, smell, and 

mouthfeel. Our inclusion of the outliers was an important part of this study because we feel the 

outliers are a necessity to report in our observations. The machine learning algorithm did not 

perform as well as the non-linear SVD but did give relatively high predictive power in some 

cases. We suspect more data will strengthen the machine learning method and the applications 

for machine learning in sensory science are still considered in their infantile stages. Possible 

applications for the SVD and the SVM include smartphone app development, implementing the 

models to sensor array development and smarter sensor technologies, winemaking blending 
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trials, consumer preference models, and identifying outlying nodes. This data and the predictive 

models herein provide valuable insight into the future of artificial intelligence and currently has 

the capacity to make an artificially intelligent sensor array system become more human.  
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APPENDIX 

MATLAB CODE 

clear 

%Load Set  

load('indep.mat')%ethanol, tannin, fructose (864x3) 

load('dep.mat')%crmlckdroma, rthmshroomroma, flrlroseroma, fruitroma, 

               %grnvgtlroma, spiceclveroma, slfrchemroma, woodmedroma, 

               %crmlckdflvr, rthmshroomflvr, flrlroseflvr, fruitlflvr, 

               %grnvgtlflvr, spiceclveflvr, slfrchemflvr, woodmedflvr, 

               %bittrnssmthfl, drymthfl, heatmthfl, sournessmthfl (864x20) 

x=ones(size(dep,1),1);                

%%%%%%%%%%%%%%%%%%%%%%%%%%% 

for MO = 1:3 

if (MO == 1) 

  indepx=[indep,x]; 

 

elseif (MO == 2) 

indepx=[indep(:,1).^2,indep(:,2).^2,indep(:,3).^2,indep(:,1).*indep(:,2),indep(:,1).*in

dep(:,3),indep(:,2).*indep(:,3),indep(:,1),indep(:,2),indep(:,3),x]; 

 

elseif (MO == 3) 

indepx=[indep(:,1).^3,indep(:,2).^3,indep(:,3).^3,indep(:,1).^2.*indep(:,2),indep(:,1).

^2.*indep(:,3), indep(:,2).^2.*indep(:,1), 

indep(:,2).^2.*indep(:,3),indep(:,3).^2.*indep(:,1),indep(:,3).^2.*indep(:,2), 

indep(:,1).*indep(:,2).*indep(:,3), indep(:,1).^2, indep(:,2).^2, indep(:,3).^2, 

indep(:,1).*indep(:,2), indep(:,1).*indep(:,3), indep(:,2).*indep(:,3), indep(:,1), indep(:,2), 

indep(:,3), x]; 

end; 

%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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for r = 1:72:864; %location of first sample for each panelist 

    pnlstindep = indepx(r:r+71,:); %get panelist data from indep and dep 

    pnlstdep = dep(r:r+71,:);   

    pnlstvarindep{(r+71)/72}=pnlstindep; %store pnlst info as vector in an array 

    pnlstvardep{(r+71)/72}=pnlstdep; %store pnlst info as vector in a matrix    

end 

%Compute SVD on each panelist, then array missing one, two, three, and four 

%and store results.  

for A=1:1:12; 

      [u,s,v]           = svd(pnlstvarindep{1,A});  

      [numSamp,dimInp]  = size(s); 

%%%  We need not use singular values that are close to zero 

      cut_off  = diag(s) > max(diag(s))*10^(-10); 

     % a        = diag(cut_off.*(1./diag(s)),dimInp,numSamp); 

      a    = [diag(cut_off.*(1./diag(s))),zeros(dimInp, numSamp-dimInp)]; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%% 

    for AA=1:1:20, pnlstvardep{1,A}(:,AA);           

     %Regression coefficients for each attribute of each panelist in array  

      beta{A}{AA}=v*a*u'*pnlstvardep{1,A}(:,AA); 

     % error{A}{AA}=pnlstvarindep{A}*beta{A}{AA}-pnlstvardep{A}(:,AA); 

     % 

error{A}{AA}=dot(pnlstvarindep{A}*beta{A}{AA}/norm(pnlstvarindep{A}*beta{A}{AA}),

pnlstvardep{A}(:,AA)/norm(pnlstvardep{A}(:,AA))); 

      rsquare(MO,A,AA)=1-(norm(error{A}{AA})/norm(pnlstvardep{A}(:,AA)))^2; 

      %plot3(A,AA,rsquare(MO,A,AA),'r+'); 

    end      

     mean_rsquare(MO,A) = mean(rsquare(MO,A,:)); 
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end 

end % MO loop 

 

 

%%%%%% Plot %%%%%%%%%%%%%%%%%% 

 

[XX,YY] = meshgrid([1:20],[1:12]); 

 

figure; 

hold on; 

plot3(XX,YY,reshape(rsquare(1,:,:),12,20),'r+'); 

plot3(XX,YY,reshape(rsquare(2,:,:),12,20),'b+'); 

plot3(XX,YY,reshape(rsquare(3,:,:),12,20),'g+'); 

hold off; 

max2_1 = max(max(rsquare(2,:,:)-rsquare(1,:,:))) 

max3_2 = max(max(rsquare(3,:,:)-rsquare(2,:,:))) 

max3_1 = max(max(rsquare(3,:,:)-rsquare(1,:,:))) 

 

min2_1 = min(min(rsquare(2,:,:)-rsquare(1,:,:))) 

min3_2 = min(min(rsquare(3,:,:)-rsquare(2,:,:))) 

min3_1 = min(min(rsquare(3,:,:)-rsquare(1,:,:))) 

 

avg2_1 = sum(sum(rsquare(2,:,:)-rsquare(1,:,:)))/240 

avg3_2 = sum(sum(rsquare(3,:,:)-rsquare(2,:,:)))/240 

avg3_1 = sum(sum(rsquare(3,:,:)-rsquare(1,:,:)))/240 

 

%%% SVM 1/17/2016%%%%%%%%%%%%%%%%%%% 

clear 

%%% Initial Stuff 
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load indep.mat 

load dep.mat 

x=ones(size(dep,1),1);      

indepx=[indep,x]; 

 

%% scaling 

% indep_scaled 

    [maxV, I] = max(indepx); 

    [minV, I] = min(indepx); 

    [R, C] = size(indepx); 

    scaled = (indepx-ones(R, 1)*minV).*(ones(R, 1)*((1-0)*ones(1, C)./(maxV-minV))) 

+0; 

 

    for i = 1:size(indepx, 2) 

        if (all(isnan(scaled(:, i)))) 

            scaled(:, i) = 0; 

        end 

    end 

    indep_scaled = scaled; 

% dep_scaled 

    [maxV, I] = max(dep); 

    [minV, I] = min(dep); 

    [R, C] = size(dep); 

    scaled = (dep-ones(R, 1)*minV).*(ones(R, 1)*((1-0)*ones(1, C)./(maxV-minV))) 

+0; 

 

    for i = 1:size(dep, 2) 

        if (all(isnan(scaled(:, i)))) 

            scaled(:, i) = 0; 
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        end 

    end 

    dep_scaled = scaled; 

     

 

%% Parameter selection 

param.s = 3;     % should do epsilon #3 and nu SVR #4 

both 

param.t = 2;     % RBF kernel 

param.C = 1;                    % C (could do more param search) 

param.gset = 2.^[-2:7];   % Range of the gamma parameter 

param.eset = [0:5];         % Range of epsilon parameter 

%param.nuset = [0:.05:1];        % Range of nu parameter 

 

for r = 1:72:864; %location of first sample for each panelist 

  pnlstindep = indep_scaled(r:r+71,:); %get panelist data from indep and dep 

  pnlstdep = dep_scaled(r:r+71,:);   

  pnlstvarindep{(r+71)/72}=pnlstindep; %store pnlst info as vector in an 

array 

  pnlstvardep{(r+71)/72}=pnlstdep; %store pnlst info as vector in a matrix  

end 

for A = 1:1:12 

    for AA = 1:1:20 

    trn.X=[pnlstvarindep{A}(:,:)]; %EtOH, Tannin, Fructose (Instance Matrix) 

    trn.Y=[pnlstvardep{A}(:,AA)]; %Attribute (Label Vector) 

     MSE = zeros(length(param.gset), length(param.eset)); %preallocation 

     kevin_error = zeros(length(param.gset), length(param.eset)); %preallocation 

        for j = 1:length(param.gset); 

            param.g = param.gset(j); 
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            for k = 1:length(param.eset); 

                y_hat = zeros(72,1); %preallocation 

                param.e = param.eset(k); 

                param.libsvm = ['-s ', num2str(param.s), ' -t ', num2str(param.t), ' -c ', 

num2str(param.C), ' -g ', num2str(param.g), ' -p ', num2str(param.e)]; 

                for i = 1:72; 

                    tst.X = trn.X([i]); %test instance 

                    tst.Y = trn.Y([i]); %test label 

                    array.X = trn.X([1:i-1, i+1:72],:); %training instance matrix 

                    array.Y = trn.Y([1:i-1, i+1:72],:); %training label vector 

                    model = svmtrain(array.Y,array.X,param.libsvm); %svmtrain 

                    [y_hat(i),acc,prediction] = svmpredict(tst.Y,tst.X,model); %svmpredict 

                    MSE(j,k) = MSE(j,k) + abs((y_hat(i)-tst.Y).^2); %Mean Squared Error 

                    kevin_error(j,k)=dot(y_hat/norm(y_hat),trn.Y/norm(trn.Y)); %Kevin 

requested error 

                end 

            end 

        end 

MSE = MSE ./ 71; %Degrees of freedom 

[v1, i1] = max(kevin_error); %Maximum Error 

[v2, i2] = min(v1); %Minimum Error 

optparam = param; 

optparam.g = param.gset( i1(i2) ); %Optimized Parameter Gamma 

optparam.e = param.eset(i2); %Optimized parameter Epsilon 

optparam.libsvm = ['-s ', num2str(optparam.s), ' -t ', num2str(optparam.t), ... 

  ' -c ', num2str(optparam.C), ' -g ', num2str(optparam.g), ... 

  ' -p ', num2str(optparam.e)]; 

    %% Optimized output  

optimal_kevin_error{A}{AA} = kevin_error(i1(i2),i2); %Optimal Error captured 

and reported 
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%% Run model with optimized parameters 

model = svmtrain(trn.Y, trn.X, optparam.libsvm); %Using all data for training 

[y_hat, Acc, projection] = svmpredict(trn.Y, trn.X, model); %Testing on all, (note 

Trn.Y & Trn.X & model) 

predvstrue{A,AA} = [y_hat,trn.Y]; %Optimized Prediction vs True 

    end 

end 

 

clear 

load 'optimal_kevin_error.mat' %Error from SVR  

load 'rsquare.mat' %rsquare from SVD 

load 'predvstrue.mat' %predvstrue from SVR 

 

%% SVD 1st ORDER VS. SVR concatenation 

for A=1:12 

    optimal_kevin_error{A}; %Error from SVR 

    form2=permute(rsquare(:,A,:),[3,1,2]); %Error from SVD 

    form1=cell2mat(optimal_kevin_error{A}); 

    scores{A}=[form2,form1'];%SVD results are first three columns, SVR is last one 

end 

% SVD all Orders vs SVR Plots 

figure 

for i=1:12 

  subplot(3,4,i)   

w=scores{i}(:,1); % SVD 1st Order cyan 

x=scores{i}(:,2); % SVD 2nd Order green 

y=scores{i}(:,3); % SVD 3rd Order blue  

z=scores{i}(:,4).^2; % SVR red; % SVR red 

plot(w,'-.c') 
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hold on 

plot(x,'-.g') 

plot(y,'-.b') 

plot(z,'--+r') 

 

%%% The form of this code is provided illustrating the creation of the SVD and 

SVM models and does not include the datamining involved or the constructs designed to 

manipulate these two functions. ddycus@yahoodotcom<END> 


