Dissertation
Understanding Molecular Machines: Theoretical and Experimental Approaches
Doctor of Philosophy (PhD), Washington State University
01/2015
Handle:
https://hdl.handle.net/2376/5490
Abstract
This dissertation concerns the study of two classes of molecular machines from a physical perspective: enzymes and membrane proteins. Though the functions of these classes of proteins are different, they each represent important test-beds from which new understanding can be developed by the application of different techniques.
HIV1 Reverse Transcriptase is an enzyme that performs multiple functions, including reverse transcription of RNA into an RNA/DNA duplex, RNA degradation by the RNaseH domain, and synthesis of dsDNA. These functions allow for the incorporation of the retroviral genes into the host genome. Its catalytic cycle requires repeated large-scale conformational changes fundamental to its mechanism. Motivated by experimental work, these motions were studied theoretically by the application of normal mode analysis. It was observed that the lowest order modes correlate with largest amplitude (low-frequency) motion, which are most likely to be catalytically relevant.
Comparisons between normal modes obtained via an elastic network model to those calculated from the essential dynamics of a series of all-atom molecular dynamics simulations show the self-consistency between these calculations. That similar conformational motions are seen between independent theoretical methods reinforces the importance of large-scale subdomain motion for the biochemical action of DNA polymerases in general. Moreover, it was observed that the major subunits of HIV1 Reverse Transcriptase interact quasi-harmonically.
The 5HT3A Serotonin receptor and P2X1 receptor, by contrast, are trans-membrane proteins that function as ligand gated ion channels. Such proteins feature a central pore, which allows for the transit of ions necessary for cellular function across a membrane. The pore is opened by the ligation of binding sites on the extracellular portion of different protein subunits. In an attempt to resolve the individual subunits of these membrane proteins beyond the diffraction limit, a super-localization microscope capable of reconstructing super-resolution images was constructed. This novel setup allows for the study of discrete state kinetic mechanisms with spatial resolution good enough to distinguish individual binding sites of these membrane proteins. Further use of this technique may allow for the study of allostery and subunit specific stoichiometry in the presence of agonist or antagonist ligands relevant to pharmacology.
Metrics
5 File views/ downloads
38 Record Views
Details
- Title
- Understanding Molecular Machines
- Creators
- Adam Scott Goler
- Contributors
- James A Brozik (Advisor)Matthew D McCluskey (Advisor)Susan L Dexheimer (Committee Member)Philip L Marston (Committee Member)
- Awarding Institution
- Washington State University
- Academic Unit
- Physics and Astronomy, Department of
- Theses and Dissertations
- Doctor of Philosophy (PhD), Washington State University
- Number of pages
- 213
- Identifiers
- 99900581530001842
- Language
- English
- Resource Type
- Dissertation