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Abstract 
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Co-Chairs: Gerrit Hoogenboom and Claudio Stockle 

 

The goal of our study was to develop a comprehensive land-assessment system for 

grapevine (Vitis vinifera L.) suitability analysis with the ability to spatially incorporate 

biophysical information from the Pacific Northwest (PNW) region of the United States. The 

potential for using satellite remote-sensing products for estimating the key phenological metrics 

of several vineyards located in the Columbia Valley of Washington was first evaluated. Remote 

sensing products such as Land Surface Temperature (LST) and the Normalized Difference 

Vegetation Index (NDVI) were also used to estimate the near surface air temperature of the 

region, which has complex terrain. Our results indicated discrepancies in the bias distribution 

due to the type of landcover present. During the following phase of our study, daily weather data 

were obtained from the Gridded Surface Meteorological data-set from the University of Idaho 

(UI GSM) for a 30-year period (1983-2012). This weather dataset were utilized to compute 
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several bio-climatic indices that were used in turn for characterizing weather dynamics of the 

American Viticultural Areas (AVA) located within the PNW. Previously established bio-climatic 

indices were also modified to improve the capture of the underlying weather phenomena of the 

region, and were then used for the development of the weather component of our land-

assessment system. For the edaphic and topographic components of the system, soil data were 

obtained from the gSSURGO dataset and topographical component data were obtained from the 

National Elevation Dataset (NED). The potential for grape production in a region can be 

restricted by many parameters; therefore, land-cover and water rights information were also 

incorporated into our system. Fuzzy logic rules were used to transform the input parameters in to 

a common scale and to calculate the vineyard potential for the study area. Finally, our developed 

land-assessment system was evaluated with a comparison of the vineyard potential of established 

vineyards. The results of our study has proven that our system can be used as an accurate method 

to help decision makers, growers, and researchers gain a better understanding of the underlying 

biophysical parameters that contribute to the potential of various areas of the PNW for wine 

grape production. 
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CHAPTER ONE  

INTRODUCTION 

Background 
 

The assessment of land potential for crop production requires a comprehensive technical 

analysis addressing all relevant biophysical, socio-economic, management, and regulation issues 

and their potential interactions. Hence, successful land assessment systems should have the 

ability to improve agricultural development within a region, as well as optimize resource 

allocation and economic expansion. Traditionally, land assessment has been conducted using 

empirical studies and the on-site evaluation of a region, including detailed lab analysis for 

chosen environmental factors. Although these procedures are accurate measures of quantifying 

the potential of a specific land parcel for agricultural production, evaluation of larger regions 

requires extensive time and financial investment. Further, combining the input data within a land 

assessment system, handling input data from large-scale studies, and additional analysis can 

hinder the development of such a progressive land assessment system.  In order to counteract 

these limitations, computer technologies such as the Geographic Information System (GIS) have 

been employed in conducting land assessments (Pereira and Duckstein, 1993; Bojorquez-Tapia 

et al., 2001; Joerin et al., 2001; Hoolber et al., 2003; Phua and Minowa, 2005; Liu et al., 2007; 

Tapa and Murayama, 2008; Mendas and Delali, 2012; Kang et al., 2013; Saha and Eckelman, 

2015). A GIS can analyze and conduct numerous procedures on spatial data and their attributes, 

and also has the powerful visualization capabilities and dynamic mapping system features to 

make it an ideal tool for land assessment of larger regions.  
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Grape (Vitis vinifera L.) is regarded as a unique crop because both crop quality and 

quantity are critical to its economic success and the life span of the vineyards are also 

contributing to the economic investments and return. Therefore, successful land assessment for 

grape production relies on optimization of both quality and yield quantity.  The key 

environmental factors affecting the growth and development of grapes are edaphic, topographic, 

and climatic.  Complex interactions between these factors determine the ultimate suitability or 

unsuitability of a region for a specific grape cultivar. These three factors are spatially contiguous 

across a landscape, and can vary both in space and time; therefore, land assessment for the 

detection of the most suitable sites for grape production also requires knowledge of the historical 

records of these environmental factors. In addition, the spatial resolution of the input data should 

capture the underlying dynamics of a region.  

These three environmental factors should be set as the core and initial boundaries 

required for development of a land assessment system for grape production. A softer boundary 

set around the initial assessment could then be used to determine the potential impact of 

variables such as land cover type, availability of water and water rights, pest and disease 

distribution, and specific management strategies. A third, broader boundary could then be used to 

provide information on market demand, land ownership, the sustainability and reputation of 

vineyard practices within a region, socio-economic factors, and local governmental rules and 

regulations (Figure 1.1.).  
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Figure 1. 1. The three main information boundaries required for the development of a land 
assessment system for wine grape. 

 

The climatic, edaphic, and topographic factors involved each include additional sub-

factors that can influence the growth and development of grapes. The climatic sub-factors 

include air temperature, precipitation, solar radiation, and to a lesser degree wind speed and 

direction. Air temperature influences many plant processes, including canopy temperature 

(Keller, 2010), which subsequently affects metabolic pathways such as photosynthesis and 

respiration (Kriedemann, 1968; Hendrickson et al., 2004; Geiger and Servaites, 1991; Keller, 
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2010). Temperature also impacts the duration and effectiveness of both flowering and fruit set 

(Jackson, 2008). Canopy temperature determines the evaporative potential of each plant and 

drives its demand for water (Keller, 2010). Solar radiation effects photosynthesis and 

carbohydrate synthesis in grapes (Jackson, 2008), while wind speed can have both a beneficial 

and detrimental impact on grapes. For example, strong winds can damage grapes (Keller, 2010; 

Jackson, 2008; Jones and Hellman, 2003; Jackson and Spurling, 1988), while a moderate wind 

speed promotes evaporative cooling and helps avoid excessive humidity buildout within the 

canopy (Keller, 2010; Jones and Hellman, 2003; Gladstones, 1992).  Precipitation not only 

influences the availability of water, but also impacts the relative humidity of the air; hence, 

excessive moisture within the grape canopy, coupled with a specific range of air temperatures, 

can lead to a disease outbreak, especially those diseases that favor a high humidity (Keller, 2010; 

Moyer et al., 2010; Jackson, 2008).  

Topographic sub-factors that can impact grape growth and development include slope, 

aspect, which is defined as the direction of the slope, and elevation. Topographic factors have the 

ability to modify the macro-climates of a region, and are important factors to be considered 

within grape land assessment systems. Elevation has a noticeable impact on air temperature, as 

the dry adiabatic lapse rate causes a drop of 1°C in air temperature for every 100 m increase in 

elevation. Slope controls air movement down hills as cooler, denser air sinks to the bottom of 

valleys and poses a greater frost risk to vineyards located in flatlands (Gladstones, 1992; Jones 

and Hellman, 2003; Jackson, 2008; Yau et al., 2013). Steep slopes substantially increasing a 

vineyard’s expenses due to higher investments in transportation, terracing, and irrigation system 

design; there is also a risk of machinery roll over. Slope direction (i.e., aspect) also plays an 

important role in the amount of solar radiation intercepted by the canopy, as well as the 
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corresponding heat accumulation (Gladstones, 1992; Jackson 2008; Keller 2010; Yau et al., 

2013).  

Edaphic (soil) factors that have a prominent influence on grape growth and development 

include soil pH, texture, drainage, depth to restrictive layer, and organic matter in soil. Soil pH 

controls the availability of nutrients for grape roots (Jones et al., 2004; Jackson 2008; Meinert 

and Curtin, 2005; Yau et al., 2013). Soil drainage controls the amount of water available for 

grape roots, and can significantly impact grape shoot and canopy vigor (Jones et al., 2004; 

Gladstones, 1992; Jackson, 2008; Yau et al., 2013). Well-drained soils are preferred by grapes as 

their roots favor less water; soil texture influences several physical and chemical attributes, 

including water percolation and water retention through the soil (Jackson 2008). Soil organic 

matter impacts both its water holding capacity and the availability of nutrients, due to 

mineralization (Gladstones, 1992; Jackson, 2008). Soil temperature also impacts grape plant, 

particularly their root activity (Gladstones, 1992). Potential grape production sites typically 

encompass the aforementioned environmental factors within their optimal range; however, it is 

uncommon for all factors to be simultaneously within the optimal range for any site. To resolve 

this issue, a proper management strategy must be developed which will successfully alter each 

limiting factor to the extent that the site will have the ability to provide a positive economic 

return despite initial investments made for soil amendment and other corrections. Such decisions 

require an extensive knowledge of all the pertinent environmental factors and also access to the 

historical weather data of a given region; thus requiring the development of a technological 

system with the ability to store and analyze a large volumes of spatio-temporal data to address 

the complex interactions (Figure 1.2.).  Development of such a system would assist growers, 
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decision-makers, and scientists interested in evaluating the potential of a specific land parcel for 

establishment of a new vineyard.  

 

Figure 1. 2. Casual Loop Diagram depicting the interaction among various biophysical factors 
vital for grape growth and development. 

 

         The approach generally applied for vineyard land assessment has been discussed in detail 

in previous studies by Dry and Smart (1988), Gladstones (1992), Jackson (2008), and Sanga-

Ngoie et al. (2010). Additional international studies have focused on specific regions including 

Canada (Sayed, 1992); Australia (Taylor and McBratney, 2001); Spain (Boufidou, 2011); Nepal 

(Acharya and Yang, 2015); and Romania (Irimia et al., 2014). Studies focused on grape regions 
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of the United States (U.S.) include: New York (Shaulis and Dethier, 1970); Virginia (Wolf, 

1997); Oregon (Jones and Hellman, 2003); Illinois (Kurtural et al., 2006); Kentucky (Kurtural, 

2007); Texas (Takow, 2008); eastern Washington (Wolfe, 1999);Walla Walla, Washington 

(Meinert and Busacca, 2000; Sorensen, 2014); Washington and the Pacific Northwest (Yau,  

2011; Yau et al., 2013; Yau et al., 2014). 

Foss et al. (2010) applied Boolean logic to determine the viticultural potential of 

southeast England; however, their approach was unable to differentiate between marginally 

suitable sites and optimum sites. Another approach for assessing potential vineyard locations 

utilized a GIS to define the climatic differences of Australia’s wine regions (Hall and Jones, 

2010).  Bowen et al. (2005) used vineyards located in the Okanogan and Similkameen Valleys of 

British Columbia, Canada to develop a GIS system for determining the relationship between site 

conditions, management practices, vineyard performance and winemaker’s performance. They 

detected significant suitability differences by comparing the regional patterns of planted cultivars 

with the medals awarded to individual vineyards and found that loamy soils found in the region 

are best suited to produce quality wine grapes in British Columbia’s Okanagan and Similkameen 

Valleys.  

In the United States, the first online site selection maps were developed by Magarey et al. 

(1998) for New York State. For eastern California a GIS was used to analyze the terroir of 

vineyard locations (Watkins, 1997) with statistically significant differences in physical 

characteristics (slope, aspect, soil depth, and water-holding capacity) between vineyard and non-

vineyard land use. Jones et al. (2004) and Kurtural et al. (2006) presented a similar spatial 

suitability analysis for Oregon and Illinois, respectively. Both utilized numerous layers of 
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information, including slope, aspect, elevation, growing degree days (GDD), frost free days 

(FFD), drainage, soil, and land use to create their suitability indices.   

For the Pacific Northwest (PNW) region of the U.S., most site selection studies have 

been conducted by Jones et al. (2004; 2006; 2010), and were mainly focused on site suitability 

analysis and evaluation of management practices in Oregon’s Umpqua and Rouge Valleys (Jones 

et al., 2004 and 2006, respectively) and the North Olympic Peninsula of Western Washington 

(Jones and Duff, 2007).  Yau et al. (2011; 2013; 2014) also used GIS to present the 

environmental features critical for vineyard site suitability analysis in the Pacific Northwest. 

They compared general characteristics such as elevation, slope, FFD, GDD, Precipitation, and 

drainage of the existing AVAs in the region; they also conducted principle component analysis, 

and concluded that most AVAs in the PNW region were affected by the interaction of GDD, 

FFD, elevation, and precipitation, and recommended that delineation and petitioning of new 

AVAs should rely more heavily on GIS and spatial datasets. They also highlighted the fact that a 

spatial comprehensive description of the features of each AVA would increase understanding of 

the unifying characteristics of the region.    

Our study was based on the fact that environmental factors are spatially continuous 

across natural landscapes; hence, we proposed avoiding the classification of environmental 

factors into discrete classes, and instead employed fuzzy logic theory (Zadeh, 1975; McBratney 

and Odeh, 1997; Joss et al., 2008). Fuzzy logic allows the users to specify the likelihood that a 

value is a member of a set. Using a numeric scale, fuzzy logic assigns 1 to represent full 

membership and 0 to represent non-membership.  We theorized that this would enable us to 

transform the datasets into a uniform scale and develop a potential vineyard system based on the 

rules of fuzzy logic. Improving the spatial and temporal resolution of the input datasets is also 
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important; therefore, we focused in this study on the improvement of the input data for all 

significant climatic factors. Since the area of interest is prone to frost risk due to its geographical 

location in the PNW, we computed a Cold Damage index based on the Cold Hardiness model of 

Ferguson et al. (2011; 2014). In addition, wind speed index and water rights were coupled with 

our developed land assessment systems to provide an auxiliary source of information for users to 

gain more knowledge of the physical environment of proposed sites. If the core of the systems is 

well developed and evaluated (Figure 1.1.), other and softer data sources could potentially be 

added later in the land assessment process.  

Goal and Research Questions 
 

The overall goal of this research was of our research was the development of a land 

assessment system that would enable researchers, extension and education specialists, and 

stakeholders to understand the impact of environmental factors on wine grape performance.  

Specific objectives included:  

• Evaluation of available options for the selection of input data for development of 

a land assessment system. 

•  Use of bio-climatic indices to improve the classification of vinicultural 

production areas in the Pacific Northwest.   

•  Employ a state-of-the art methodology for use in the development of a land 

assessment system for determining potential vineyard locations. 

• Develop a land assessment system based on high-resolution spatial and temporal 

biophysical data for the Pacific Northwest. 
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To achieve these specific objectives, several key steps were defined, each step serving as 

an essential stepping-stone to the next in the development of our land assessment system (Figure 

1.3.). Hence, the land assessment system was strongly dependent on the successful completion of 

the initial steps, as the outputs from the initial steps were required to successfully calculate the 

vineyard potential of a particular site.  

I  

 

Figure 1. 3. Research overview and major steps. 

 

 

Thesis outline and overview of study approaches 
 

The following four chapters detail the steps taken to achieve our research specific 

objectives. Chapter Two explores the utilization of remote sensing technology, particularly 

Vegetation Indices (VIs) and their dynamics, for estimation of the key phenological stages of the 
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grapevines commonly grown in state of Washington. Chapter Three investigates the use of 

satellite remote sensing products such as Land Surface Temperature (LST) when coupled with 

VIs to estimate the near-surface air temperature of regions featuring a complex terrain, with 

limited access to weather station data. Chapter Four focuses on the calculation of several bio-

climatic indices for the state of Washington and parts of Oregon; these bio-climatic indices were 

computed based on 30 years of daily weather data and the scores were reported for each AVA in 

the region of study.  A spatial wind index, a dynamic minimum temperature index, and a cold 

damage index were also developed to more accurately address the risk factors associated with the 

low air temperatures experienced by various regions. Chapter Five discusses development of a 

comprehensive land assessment system via assimilation of selected bio-climatic indices and 

edaphic and topographic information; our system utilizes fuzzy logic rules for determining the 

vineyard potential scores; the evaluation of the land assessment system is also discussed. Chapter 

Six provides a synthesis and final remarks on the topic and also discusses future implications and 

potential advancements of our study.  
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CHAPTER TWO  

ESTIMATING GROWING SEASON LENGTH USING VEGETATION INDICES 

BASED ON REMOTE SENSING: A CASE STUDY FOR VINEYARDS IN 

WASHINGTON1 

Abstract 
 

Knowledge of the phenological events which effect grapevines is essential for successful 

vineyard management. Conventional ground-observed phenological measurements are limited in 

scope, mainly due to their narrow spatial coverage; however, satellite data provides access to 

global spatial coverage, potentially providing high temporal resolution. The goal of our study 

was to use remote sensing to evaluate the efficacy of Vegetation Indices for estimating the length 

of the growing season for grapes grown in Central Washington. Several phenological metrics for 

vineyards located in the Columbia Valley region were derived from the satellite time series 

provided by the Moderate Resolution Imaging Spectroradiometer (MODIS), using the 

normalized difference vegetation index (NDVI). Our methodology included exponential 

smoothing and a moving average to compute both the onset of greenness and the end of 

greenness.  The MODIS NDVI values were evaluated using aerial NDVI images for the same 

vineyard for August 2011.  The average bias was -0.08, the average root mean squared error 

(RMSE) was 0.16, and the coefficient of determination (R2) was 0.5(p-value 0.06). The results 

revealed an average growing season duration of 216 days for grapevines grown in this region 

over a period of five years. The average starting date of the growing season coincided with April 

                                                 
1Published as: Badr, G., Hoogenboom, G., Davenport, J., and Smithyman, J. (2015).  Estimating Growing Season Length Using Vegetation Indices 

Based on Remote Sensing: A Case Study for Vineyards in Washington State. (2015). Transactions of the ASABE, 551–564. © 2015 by the 
American Society of Agricultural and Biological Engineers; reprinted with permission.  
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2nd, and the computed end of the growing season was November 4th. The highest NDVI value 

was 0.55 and coincided with July 12th. On average, the lowest NDVI value was 0.3, with an 

average range of 0.25. Our preliminary results showed that MODIS NDVI can be used to 

monitor vineyard vegetation dynamics in the Columbia Valley, and also has the potential to be 

applied to other grape-growing regions in the U.S.A. and even internationally.  

Introduction   
 

Vegetation phenology is the study of the life cycle of crops; the inter-annual variability of 

a crop’s life cycle can be investigated using vegetation phenology (Cunha et al., 2010). Optimum 

grapevine production requires a distinct fusion of weather, soil, topography, and vineyard 

management. To monitor performance of grapevines within a region, growers obtain the 

phenological observations for their individual vineyards (Chuine et al., 2004; Cunha et al., 2010). 

Good vineyard management requires access to grapevine phenological data in order to make 

decisions based on the status of the specific vines (Cunha et al., 2010). Combining phenological 

data with local climate data enables assessment of the potential response of grape varieties in 

new regions, and this combination can also be used to index potential climate change (Chuine et 

al., 2004; Jones and Davis, 2000; Cunha et al., 2010).  

There are two primary approaches for conducting phenological measurements: ground-

based observation of the phenology of the individual grapevines and satellite-based observation 

of the phenology. Both methods have advantages and disadvantages: ground-based observation 

of phenology benefits from a high temporal resolution and detailed information regarding species 

and cultivar dynamics. However, the spatial resolution of ground-based observations can be 

limited (Ricotta and Avena, 2000; Schwartz et al., 2002; White et al., 2005; Studer et al., 2007). 

Satellite-based observation of phenology can potentially provide higher spatial resolution, 
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making it a suitable complementary observation method (Studer et al., 2007). There are currently 

a large number of satellite datasets available in the public domain with extensive global coverage 

(Hall et al., 2002; Dobrowski et al., 2003; Johnson et al., 2003).   

Remote sensing and NDVI metrics 
  

Polar-orbiting environmental satellites provide daily coverage of the Earth. The Moderate 

Resolution Imaging Spectroradiometer (MODIS) is one of the NASA-designed instruments 

onboard the Terra satellite. Terra uses five sensors to observe the atmosphere, land surface, 

oceans, snow and ice, and energy budget (Terra, 2014). The Earth’s bio-geochemical and energy 

systems are monitored by these sensors. The MODIS sensor is categorized as multispectral with 

a total of 36 spectral bands, and has a spatial resolution that ranges from 250 m to 1 km.  These 

spectral bands are particularly effective for the monitoring of terrestrial vegetation systems 

(Barnes et al., 1998; Justice et al., 2002). For a complete review of the MODIS and its products, 

see Justice et al. (2002); Guenther et al. (2002); and Morisette et al. (2002). 

The normalized difference vegetation index (NDVI) is the ratio of the difference between 

the reflectance in the red and near-infrared regions of the spectrum to the summation of these 

two values. Rouse et al. (1974), and is defined by NDVI as follows: 

                                                                                          (2.1.) 

where represents the reflectance at the near-infrared region of the spectrum (0.7 – 1.1 µm) 

and denotes the reflectance at the red wavelengths (0.6 – 0.7 µm).   

NDVI is often used in environmental studies because it has the ability to exploit the 

spectral properties of green leaves (Goward et al., 1985; Tucker et al., 1991; Petorrelli et al., 

2005; Dougherty, 2012; Pettorelli, 2013). Various algorithms have been used to derive 

parameters related to vegetation phenology and production from NDVI time series’ (reviewed in 
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Petorrelli et al., 2005; Atkinson et al., 2012; Jamali et al., 2015). Petorrelli et al., (2005) 

specifically referred to the stepwise logistic regression to represent the inter-annual dynamics of 

NDVI, and also as a means to obtain key transition dates such as the onset of greenness. The 

primary advantage of using logistic regression is that it treats each pixel separately and also takes 

into consideration the multi-modal vegetation profiles within a specific region (Petorrelli et al., 

2005). In addition, this algorithm can successfully manage the false high values that can cause 

sudden increases in daily NDVI values (Petorrelli et al., 2005). Fischer (1994) developed a semi-

empirical function to model the NDVI profile using a logistic function with five parameters to 

describe the annual time profile of NDVI, as crops with similar phenology behave like 

homogenous canopies. He reported two of these parameters as the slopes of the ascending and 

descending inflection points, respectively. Two additional parameters were set as the dates that 

the ascending and descending inflection points were observed, and the final parameter was 

related to the asymptotic value of the NDVI.  Reed et al. (1994) derived 12 metrics related to key 

phenological stages taken from the NDVI time series of various land cover types found 

throughout the U.S., such as coniferous and deciduous forests, grasslands, and winter wheat. The 

chosen metrics included onset of greenness, time of peak NDVI, maximum NDVI, rate of green-

up, rate of senescence, and integrated NDVI; a strong correlation was found between the 

satellite-derived metrics and the predicted phenological characteristics. Reed et al. (1994) 

categorized the NDVI metrics into three groups: 1) temporal metrics focused on the timing of an 

event; 2) NDVI-based metrics that report the value of the NDVI when specific phenological 

events occur; and 3) derived metrics computed from each NDVI time series. However, they also 

emphasized that these metrics may not necessarily correspond to conventional ground-based 

phenological events.  Zhang et al. (2003) determined vegetation phenology based on MODIS 
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data; their results were consistent with the vegetation dynamics of the chosen study area, and 

their MODIS-based estimates of phenology (green-up onset, maturity onset, and dormancy 

onset) depicted a strong spatio-temporal pattern based on the type of land cover present. No 

ground-based measurements were used to evaluate these MODIS-based estimates; therefore, the 

group recommended that future research also utilize ground-based data. 

 Several studies have focused on the application of NDVI obtained from satellite remote 

sensing to viticulture (Hall et al., 2011; Johnson et al., 2012). These studies have mainly 

concentrated on vineyard vigor mapping (Montero et al., 1999; Johnson et al., 2003; Johnson et 

al., 2012), canopy density estimation (Dobrowski et al., 2002; Johnson et al., 2012), high-

resolution vineyard mapping (Hall et al., 2003; Johnson et al., 2012), cover crop estimation 

(Trout et al., 2008; Johnson et al., 2012), and pruning weight calculation (Stamatiadis et al., 

2006; Johnson et al., 2012). Low spatial resolution NDVI imagery has proven more effective 

than LAI for mapping the spatial variability of minimally pruned, unconfined vineyards (Hall et 

al., 2008); Hall et al. (2002) derived grapevine canopy density and area from high spatial 

resolution aerial images. In another study, Hall et al. (2011) evaluated inter-seasonal changes to 

determine the correlation between canopy size, grape composition, and final yield. Lamb et al. 

(2004) reported a relationship between the physical properties of the grapevine canopy derived 

from remotely-sensed data and the measurement of grape phenolics and color for Vitis vinifera 

‘Cabernet Sauvignon’. Their study was conducted over two growing seasons in vineyards 

located in the Coonawarra region of Southern Australia. The quantification of grape color (mg 

anthocyanins/gram berry weight) and total phenolics (280 nm absorbance units per gram berry 

weight) were conducted using the procedures described by Iland et al. (2000). The relationship 

between the remotely-sensed data and the berry properties varied with grapevine phenology, 
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with the highest correlation observed at veraison.   However, to date, few studies have focused 

on the application of satellite-based NDVI to estimate the vegetation phenology of grapevines, 

and none have been conducted in the Pacific Northwest. Cunha et al. (2010) successfully 

predicted the flowering date of grapevines, with an average deviation of three days, for an eight-

year period (1999-2007) based on ten-day image composites of VEGETATION. They reported a 

significant correlation between the observations of full canopy dates based on satellite data and 

the occurrence of veraison observed under field conditions.  No previous studies have focused on 

deriving grapevine phenological metrics from MODIS-based vegetation indices; the goal of our 

study was to determine the applicability of MODIS NDVI for the prediction of growing season 

length in grapes produced in the Pacific Northwest.   

 

Materials and Methods 
 

Study area 
 

This study was conducted in the Columbia Valley of the State of Washington, United 

States (Figure 2.1.). Fourteen vineyards were used, all between the latitudes of 47.13° N and 

46.2° N, and the longitudes of 120.2° W and 119.6° W (Table 2.1.).  
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Table 2. 1.The representative coordinates, average elevations, and major soil type of the test 
vineyards. 

  Coordinates     

Vineyard ID Longitude Latitude Elevation(m) Soil type 
Coresponding 
AgWeatherNet 
station 

1 -119.96 47.12 416 Loam George West 

2 -119.92 46.90 374 Silt loam 
Royal city 
west 

3 -119.91 46.85 213 Silt loam 
Royal city 
west 

4 -119.89 46.75 262 Silt loam Desert Aire 

5 -119.64 46.75 235 Sand Mattawa 

6 -119.83 46.65 179 Silty clay 
loam 

Mattawa 

7 -119.82 46.54 423 Sandy loam Mattawa 

8 -120.20 46.44 416 Sandy loam outlook 

9 -119.83 46.26 289 Sandy loam 
WSU 
Hamilton 

10 -119.68 46.30 334 Fine sandy 
loam 

Roza 

11 -119.45 46.30 270 Loam Benton City 

12 -119.46 46.28 213 Loam Benton City 

13 -119.43 46.28 270 Fine sandy 
loam 

Benton City 

14 -119.79 46.75 276 Fine sandy 
loam 

Mattawa 

      

 

 

The varieties included were ‘Cabernet Sauvignon’, ‘White Riesling’, ‘Merlot’, ‘Syrah’, 

‘Cabernet Franc’, ‘Malbec’, ‘Pinot Gris’, and ‘Petit Verdot’. The vineyards were located in 

Benton, Grant, and Yakima counties (Figure 2.1.). The majority of land in these three counties is 

covered by shrublands, pasture, corn (Zea mays), hops (Humulus lupulus), alfalfa (Medicago 

sativa), apples (Malus domestica), dry beans (Phaseolus vulgaris), and spring wheat (Triticum 

aestivum) (USDA-NASS, 2014).  In this region, the dominant soil type is a silt loam, with the 

elevation ranging from 160 m to 460 m. The climate is characterized as continental, with an 

average annual temperature of 11.3°C, and a total annual precipitation of 12.6 mm 
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(AgWeatherNet, 2015). Vineyard block areas ranged from 20 ha to 200 ha, with the majority 

being fewer than 50 ha.  

 

 

Figure 2. 1. Study area and locations of the selected vineyards in the State of Washington and its 
counties (all within the Grant, Benton, and Yakima counties). 

 

NDVI 
 

  MODIS data were downloaded from the NASA Land Processes Distributed Active 

Archive Center (NASA, 2015); to better understand the grapevine dynamics, more than one year 

of MODIS products were retrieved (2009-2013). The downloaded data included 16-day 
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composites of MODIS NDVI, and 23 composite images (featuring a spatial resolution of 1 km) 

were available for each year of the study period (Figure 2.2.). In this study, the NDVI composites 

were used because the changes in the vegetation status on a daily basis were not significant and 

the atmospheric effects could be eliminated by compositing.  

 

Figure 2.2. Example of a MODIS NDVI composite of the study area (August 13, 2009). The 
vineyard locations (black squares) and their corresponding counties are superimposed over the 
image. 

 

Aerial images were acquired during 4-hour periods commencing at approximately solar 

noon throughout August 2011, using a camera sensor Canon D5 MK II with a pixel size of 0.5 

meters; the images were also georeferenced (PCS_NAD1983_Washington_South).  The aerial 

images were provided by the Ste. Michelle Wine Estates for several vineyards, and were only 

available for August of 2011. The images were converted to NDVI by the providing company, 

and the VISAT 4.10.3 (BEAM, 2013) was used to check the statistics of the aerial NDVI images 

(Table 2.2.).  
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Table 2.2. Descriptive statistics of the raw values of NDVI obtained from the aerial images, the 
NDVI from the aerial images after the vineyards were geometrically selected, and the NDVI 
from the aerial images after removing pixels below the NDVI threshold of 0.15. 
 
 

Vineyard 
Raw NDVI Aerial Images 

 
Geometrically Selected 

 
Filtered 

Min. Max. Mean SD CV Median Min. Max. Mean SD CV Median Min. Max. Mean SD CV Median 
1 0 1.16 0.28 0.23 0.01 0.26  0 1.01 0.36 0.20 0.01 0.37  0.15 1.01 0.43 0.16 0.00 0.43 
2 0 0.97 0.36 0.27 0.01 0.37  0 0.97 0.31 0.13 0.00 0.31  0.15 0.97 0.33 0.12 0.00 0.31 
3 0 0.93 0.12 0.13 0.01 0.08  0 0.86 0.17 0.13 0.01 0.14  0.15 0.82 0.28 0.10 0.00 0.26 
4 0 1.19 0.21 0.22 0.01 0.14  0 0.91 0.26 0.17 0.01 0.23  0.15 1.19 0.41 0.18 0.00 0.39 
5 0 0.97 0.23 0.22 0.01 0.14  0 0.99 0.32 0.21 0.01 0.33  0.15 0.97 0.38 0.18 0.00 0.39 
6 0 1.05 0.28 0.24 0.01 0.19  0 1.05 0.32 0.24 0.01 0.32  0.15 0.77 0.34 0.11 0.00 0.35 
7 0 0.85 0.20 0.20 0.01 0.14  0 0.77 0.19 0.15 0.01 0.14  0.15 0.81 0.36 0.13 0.00 0.36 
8 0 0.83 0.14 0.14 0.01 0.10  0 0.70 0.21 0.12 0.01 0.18  0.15 0.68 0.27 0.09 0.00 0.25 
9 0 1.11 0.29 0.21 0.01 0.30  0 1.04 0.37 0.16 0.00 0.38  0.15 1.04 0.51 0.15 0.00 0.51 

10 0 1.23 0.29 0.26 0.01 0.19  0 1.19 0.53 0.17 0.00 0.53  0.15 1.14 0.54 0.14 0.00 0.53 
11 0 1.02 0.14 0.20 0.01 0.02  0 1.02 0.31 0.20 0.01 0.29  0.15 1.02 0.40 0.16 0.00 0.39 
12 0 0.91 0.08 0.13 0.02 0.07  0 0.69 0.23 0.15 0.01 0.18  0.15 0.69 0.33 0.12 0.00 0.34 
13 0 1.14 0.11 0.13 0.01 0.06  0 1.14 0.11 0.13 0.01 0.06  0.15 0.79 0.37 0.13 0.00 0.38 
14 0 0.89 0.11 0.16 0.02 0.00  0 0.71 0.08 0.13 0.02 0.00  0.15 0.89 0.33 0.13 0.00 0.32 

Average 0 1 0.20 0.20 0.01 0.15  0 0.93 0.27 0.16 0.01 0.25  0.15 0.91 0.38 0.14 0.00 0.37 

 

The positional accuracy of the aerial images was verified using Google Earth (Google 

Earth, 2013), and the latitudinal and longitudinal coordinates at the top left corner and bottom 

right corner of the aerial images were obtained using VISAT (BEAM, 2013). Since the aerial 

images represent the vineyard locations, the obtained coordinates were used to define a frame for 

extracting the NDVI values from the MODIS NDVI composites (Figure 2.3.). 
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Figure 2. 3. The overall methodology used in this study. 

Evaluation 
 

The aerial images were filtered by omitting all NDVI values below 0.15 using the VISAT 

4.10.3 (BEAM, 2013) band math tool (Table 2.2.), which reduced any noise introduced via the 

inter-row spaces of the vineyards. This particular threshold value was selected because the 

median for the NDVI obtained from the aerial images was 0.15 (Table 2.2.); additionally, 

inspection of the images showed that the NDVI corresponding to the inter-row spaces was less 

than 0.15.  During the next phase, the vineyards were geometrically selected using the polygon 

drawing tool in VISAT 4.10.33 (BEAM, 2013). This polygon was then used as a mask to 

minimize any effect of other unwanted vegetation, such as annual crop fields and orchards, 

within the field of view of the camera on the NDVI values derived from the image (Figure 2.4.).  
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Figure 2. 4. Example of geometric selection of the vineyards in the NDVI image, based on aerial 
images acquired in August of 2011: (a) original image; (b) geometrically-selected vineyard (in 
blue). 

The VISAT pin manager tool (BEAM, 2013) was employed to extract the MODIS NDVI 

values using the coordinate values of the vineyards. For each vineyard, the MODIS NDVI values 

were narrowed to a single value because the spatial size of the vineyard blocks was small and the 

blocks were covered by individual MODIS pixels (Table 2.1.). The NDVI values obtained from 

the aerial images of the individual blocks were averages; using standard statistical methods, we 

compared the NDVI values based on the aerial images to the MODIS NDVI values. The primary 

purpose of this evaluation phase was to note any potential differences between the MODIS 

NDVI and the NDVI obtained from sources with much finer spatial resolutions (e.g. aerial 

images).  

Grapevine  phenological  metrics 
 

The vineyards’ MODIS NDVI values for a period of five years were extracted using the 

VISAT pin manager tool (BEAM, 2013). In each of these five-year periods, a total of 115 

MODIS NDVI values were available for each vineyard.  We used the MODIS NDVI values 

extracted for each vineyard block to obtain the grapevine phenological metrics (Table 2.3.). 

 

a b 
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Table 2. 3. NDVI metrics and their phenological interpretation (adapted from Reed et al., 1994). 
NDVI metric Phenological interpretation 

Temporal NDVI metric 
 

Time of onset of greenness Beginning of growing season in grapevines 

Time of end of greenness Termination of growing season  in grapevines 

Duration of greenness Duration of active photosynthesis in grapevines 

Time of maximum NDVI Time of maximum greenness, which 
coincides with veraision in grapevines (Cunha et al., 2010) 

NDVI value metric  
 

Value of the onset of greenness NDVI of grapevines at  start of growing season 

Value of the end of greenness NDVI of grapevines at  end of growing season 

Value of maximum NDVI Maximum NDVI of grapevines 

Range of NDVI Range of NDVI in grapevines 

Derived metrics 
 

Time integrated NDVI Net primary production of grapevines 

Rate of green up Pace of acceleration of photosynthesis in grapevines 

Rate of senescence Pace of deacclaration of photosynthesis in grapevines 

 

 

The MODIS NDVI data showed extensive variability within a range of 0.65. The 

variability was due to issues such as cloud-contaminated pixels, ozone and water vapor 

absorption, solar illumination, instrument degradation, and insufficient calibration (Reed et al., 

1994; Studer et al., 2007; Cunha et al., 2010).  To counteract this variability, we smoothed the 

MODIS NDVI data using an approach similar to that employed by Reed et al. (1994); Studer et 

al. (2007); and Cunha et al. (2010). We utilized the exponential smoothing option from the Excel 

data analysis tool-box (Microsoft, 2010), with a damping factor of 0.75 (Figure 2.5.; Figure 2.6.).  
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Figure 2.5. Schematic profile of the NDVI for a single growing season.  The use of smoothed 
and moving average methods to detect the length of the growing season is also depicted. 

 

We calculated a moving average of the MODIS NDVI data using the data analysis 

toolbox of Excel (Microsoft, 2010) so that we could obtain respective NDVI metrics from the 

MODIS NDVI data. The moving average was calculated using an equation based on 

autoregressive moving average (ARMA) models (Hoff, 1983; Granger, 1989). The 

autoregressive moving average model has been employed in the previous phenological studies 

(Reed et al., 1994; Studer et al., 2007; Cunha et al., 2010). The calculation of the moving average 

was based on the following equation:   

         (2.1.) 

where is the computed moving average for time t,  is the smoothed NDVI value for time t, 

and w is the time interval employed to derive the moving average. The time interval was set to 

eight cycles of NDVI composites (Reed et al., 1994), and a time lag was introduced to the 

smoothed MODIS NDVI values. This was done because the moving average calculates the mean 

value from the last eight available MODI NDVI composites, forming “backward looking” filters 
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over the MODIS NDVI values. The values obtained from the moving average were then 

compared against the NDVI time series in order to detect any departure from the established 

trend as a result of smoothing. 

 

Figure 2.6. Original, smoothed, and moving average NDVI time series for test vineyard #10 
over the study period (2009-2013). Onset of greenness (onset) and end of greenness (End) has 
also been reported for each year. The correlation between the raw MODIS NDVI and the 
smoothed NDVI was 0.7, and the correlation between the smoothed NDVI and the moving 
average was 0.76. 

The onset of season greenness was defined as the beginning of the growing season in 

grapevines; thus, the period when the smoothed MODIS NDVI values either became greater than 

the moving average or showed the least amount of difference from the moving average values 

was considered the onset of greenness (Figure 2.5.).  End of season greenness was defined as the 

termination of the growing season in grapevines. End of greenness was identified as the period 
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when the smoothed MODIS NDVI values either became smaller than the moving average or 

showed the least amount of difference from the moving average values.  Duration of greenness 

was defined as the number of days between the onset of greenness and the end of greenness. The 

maximum NDVI value was not susceptible to cloud contamination or any other source of bias 

(Reed et al., 1994), thus enabling us to derive the time and value of the maximum NDVI from 

the original NDVI values.  The NDVI range was computed by subtracting the value of the lowest 

NDVI from that of the maximum NDVI. The green-up rate was the rate increase in the NDVI 

during the growing season, and was obtained via calculation of the slope of the relationship 

between the maximum NDVI value and the onset of greenness. The rate of senescence was the 

rate decrease in the NDVI, which was derived from the slope of the relationship between the 

NDVI value for the end of greenness and the maximum NDVI value. The smoothed NDVI 

values between the onset of greenness and the end of greenness were used to obtain the time-

integrated NDVI value. The time-integrated NDVI value was computed using the following 

equation (Yang et al., 1998): 

     (2.3.) 

where i is the ith 16-day composite data, ranging from the onset of greenness (l) to the end of 

greenness (n). 

Growing Degree Days (GDD) 
 

The heat unit accumulation or growing degree days (GDD) value for each vineyard was 

calculated for each year of the study.  The growing degree day calculation was based on the 

following equation, with a base temperature (  ) of 10 °C (Winkler et al., 1974; Jones et al., 

2010). 

                                       (2.4.) 
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where  is the minimum air temperature value for a single day, and    is the maximum 

air temperature value for a single day.   is the base temperature at which the grapevine 

resumes its activity, and below which temperature there is no significant biological activity (i.e., 

no heat units accumulate when the average temperature is below that of the base temperature).   

The weather data were obtained from AgWeatherNet (AgWeatherNet, 2015), a network 

of automated weather stations located in the State of Washington and managed by Washington 

State University. The AgWeatherNet weather stations located nearest each vineyard were used to 

obtain the daily air temperature data for the study period.  We assumed two different growing 

seasons to accumulate GDD values: 1) a fixed growing season between April 1st and October 

31st; and 2) a growing season based on the time of onset of greenness and the time of end of 

greenness derived from the MODIS NDVI. The GDD values based on the two different growing 

seasons were then compared using standard statistical methods. 

Results and Discussion 
 

Evaluation 
 

The MODIS NDVI values were evaluated against the NDVI values derived from the 

vineyard aerial images acquired in August 2011 (Table 2.4.). The results indicated a coefficient 

of determination (R2) of 0.5 (p-value 0.06), a RMSE value of 0.16, and an average bias of -0.08. 

The MODIS NDVI values were greater than the aerial image values for most of the vineyards, 

but not for all (e.g. vineyards 10, 11, and 13). The highest absolute bias value was obtained for 

vineyard 14, while the lowest absolute bias value was obtained for vineyards 3, 5, and 12. This 

difference in values can largely be attributed to the coarser spatial resolution of MODIS 

compared to that of the aerial images, since the incoming electromagnetic signal reaching the 
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MODIS sensor is comprised of a mixture of the spectral signatures of different land cover types 

within the pixel of interest.  

Table 2. 4. NDVI values derived from the aerial images and MODIS and the corresponding bias. 
Vineyard ID Predicted ( Aerial images) Predicted(MODIS) Bias 

1 0.43 0.69 -0.27 

2 0.33 0.40 -0.07 

3 0.28 0.28 -0.01 

4 0.41 0.71 -0.30 

5 0.43 0.44 -0.01 

6 0.34 0.30 0.04 

7 0.36 0.39 -0.02 

8 0.28 0.35 -0.07 

9 0.43 0.70 -0.27 

10 0.57 0.52 0.04 

11 0.38 0.25 0.13 

12 0.33 0.34 -0.01 

13 0.29 0.26 0.03 

14 0.31 0.65 -0.34 

Average 0.37 0.45 -0.08 

SD 0.08 0.17 0.15 

RMSE   0.16 

 

The land cover surrounding each vineyard was obtained from the National Agricultural 

Statistics Service (NASS) crop land data layer (CDL) for 2011 (USDA-NASS, 2014). In the case 

of vineyard 10 (the vineyard with the highest positive bias), there was open water adjacent to the 

vineyard.  The NDVI value for open water is very low and can even be negative (Glenn et al., 

2008); therefore, this value integrates with the extracted MODIS value for a particular pixel, 

resulting in a lower NDVI value compared with that of the NDVI obtained from the aerial image. 

The lowest absolute bias was observed in the pixels that were surrounded by other vineyards 

and/or pasture/hay land cover.  The highest absolute bias was observed in vineyard 14, which 

was surrounded by shrublands.  Vineyard 14 was established only a year prior to the image 

acquisition, therefore, the grapevine canopy was not fully developed and so the signal from the 
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soil was dominant, resulting in a higher difference between the aerial image NDVI and that of 

the MODIS NDVI for that particular pixel.  

Growing Degree Days (GDD) 
 

The heat unit accumulations obtained for the individual vineyards were based on a period 

of the growing season between the onset of greenness and the end of greenness, and were 

computed using MODIS NDVI. Additionally, a GDD based on standard growing season duration 

(April 1st - October 31st) was also derived for each vineyard (Table 2.5.; Figure 2.7.).  

Table 2. 5.  GDD values computed for a fixed growing season (April-October) and the growing 
season derived from the MODIS NDVI. 

 

Vineyard 

2009 

 

2010 

 

2011 

 

2012 

 

2013 

 

Fixed 
2009-2013 

 

NDVI 
2009-2013 

Fixed NDVI Fixed NDVI Fixed NDVI Fixed NDVI Fixed NDVI 
Avg. SD Avg. SD 

1 1661 1690  1386 1327  1388 1349  1615 1598  1759 1746  1562 168  1542 194 
2 1712 1678  1453 1416  1354 978  1591 1486  1691 1707  1560 154  1453 293 
3 1712 1706  1453 1160  1354 1334  1591 1423  1691 1707  1560 154  1466 239 
4 1951 1886  1736 1627  1735 1574  1888 1868  2062 2096  1874 141  1810 212 
5 1718 1713  1503 1474  1486 1457  1652 1635  1789 1807  1630 133  1617 151 
6 1718 1635  1503 1352  1486 1390  1652 1584  1789 1807  1630 133  1554 187 
7 1718 1650  1503 1383  1486 1332  1652 1488  1789 1807  1630 133  1532 196 
8 1704 1753  1442 1496  1411 1461  1659 1659  1763 1785  1596 159  1631 147 
9 1546 1592  1363 1345  1356 1302  1553 1200  1648 1659  1493 129  1420 197 

10 1480 1496  1292 1290  1219 1205  1417 1287  1489 1506  1379 119  1357 136 
11 1673 1772  1525 1537  1506 1385  1665 1458  1768 1798  1627 110  1590 186 
12 1673 1593  1525 1613  1506 1571  1665 1625  1768 1791  1627 110  1639 88 
13 1673 1772  1525 1539  1506 1576  1665 1625  1768 1798  1627 110  1662 117 
14 1718 1715  1503 1419  1486 1457  1652 1661  1789 1807  1630 133  1612 168 

 

The variability in the calculated GDD values is a result of the difference in length of the 

fixed growing season (213 days) versus that of the growing season obtained from the MODIS 

NDVI, which varied as a result of the heterogeneity of the MODIS NDVI pixel containing the 

vineyard. To accurately capture their dynamics, vineyards should be monitored using spatial, 

temporal, and spectral remotely-sensed data at higher resolutions. We obtained higher standard 

deviation values for the GDD from the MODIS NDVI-derived growing seasons for each 

vineyard, except vineyards 8 and 12. The total accumulated GDD value for a fixed growing 

season was greater for most of the vineyards, except for vineyards 8, 12, and 13; this higher 
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GDD value was directly related to the growing season length. The average bias of the 

accumulated GDD for the April-October growing season and that of the MODIS NDVI-derived 

growing season was 39.  

  

  

 

 

a b 

c d 

e 
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Figure 2.7. Interpolated accumulated growing degree days with  a base of 10 °C (GDD) of a 
fixed growing season (April 1st - October 31st) in (a) 2009, (b) 2010, (c) 2011, (d) 2012, and (e) 
2013. 

Phenological  metrics 
 

The results indicated an average growing season length of 216 days for the test vineyards 

during the study period (2009-2013) (Table 2.6.). A fixed growing season between April 1st and 

October 31st has 213 days, while the growing season we obtained was 3 days longer. The 

estimated growing season length determined in our study was within 15% of the growing season 

length (190 days for Central Washington) reported by Gladstones (1992) and Howell (2001). 

Taking into account the coarse spatial resolution of the images and the fact that the MODIS 

NDVI images are actually a composite of 16-day values, we found our estimate within 15% of 

the known value for growing season length promising. 

Table 2.6. The overall phenological metrics for all the test vineyards. 
NDVI metric 

  
Year 

  
Temporal NDVI metric 2009 2010 2011 2012 2013 

Time of onset of greenness (DOY) 79 93 116 118 54 

Time of end of greenness (DOY) 311 310 310 309 302 

Duration of greenness 233 214 193 193 248 

Time of maximum NDVI (DOY) 167 182 177 263 182 

NDVI value metric 
     

Value of the onset of greenness 0.29 0.31 0.33 0.28 0.38 

Value of the end of greenness 0.40 0.43 0.44 0.42 0.37 

Value of maximum NDVI 0.50 0.56 0.57 0.55 0.56 

Range of NDVI 0.22 0.23 0.23 0.25 0.32 

Derived metrics 
     

Time-integrated NDVI 5.59 5.62 5.28 5.01 7.22 

Rate of green-up (NDVI/day)  0.003 0.004 0.003 0.003 0.001 

Rate of senescence(NDVI/day) 0.002 0.004 0.003 0.005 0.002 

 

The average onset of greenness, i.e. the starting date of the growing season, was around 

April 2, while April 1 is commonly considered as the first day of the growing season, especially 

for the calculation of GDDs. The time for the onset of greenness, on average, was March 20 for 
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2009, April 3 for 2010, April 26 for 2011,  April 28 for 2012, and February 23 for 2013 (Figure 

2.8.). Keller et al. (2010) reported an average bud break date around April 26 for this region. 

Therefore, the 2011 and 2012 results were close to the value reported by Keller et al. (2010). 

Spring temperatures also control the onset of greenness. Among the reported years, 2013 was the 

warmest with an average air temperature of 11.4° C, and the onset of greenness was early and 

started on February 23. The coldest year among the five years was 2011, with an average air 

temperature of 10. 6° C and the onset of greenness was April 26. Investigation showed that bud 

break had not started by late April. The average annual air temperature was calculated for the 

month leading to onset of greenness, and the values were 6.3° C for  March 2009 , 13° C for 

April 2010, 10.6° C for April 2011, 14.1° C for April 2012, and 6° C for February 2013, with an 

overall average of 10 ° C for five years. 

Average air temperature of at least 6° C seems to have been required for grapevine bud 

break (AgWeatherNet data); the onset of greenness was indicated by the leaf appearance phase. 

Previous studies reported a base temperature of 4° C for bud break and a base temperature of 7° 

C for leaf appearance (Moncur et al., 1989). However, these base temperatures are highly 

variable with regard to grape cultivars. We expected that the onset of greenness would 

commence during the month in which air temperature values become equal to or greater than 6 

°C. However, the results did not confirm this as the overall average temperature for the month 

leading to the onset of greenness was 10 ° C for the five year period of the study. This average 

temperature is higher than the previously reported air temperature required for the bud break of 

the grapes but agrees well with Winkler’s threshold. The difference might be due to the annual 

variation in the air temperature and the differences among the grape cultivars.  
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Figure 2.8. Spatial distribution of the main phenological metrics based on the MODIS NDVI 
(2009-2013): (a) date of onset of greenness; (b) duration of growing season (days); (c) date of the 
end of greenness; (d) date of maximum NDVI; and (e) TINDVI (similar to NDVI but without 
units). 

 

a b 
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The results indicated that the average time of the end of greenness was November 4th. 

The end of the growing season is set to be the end of October to permit comparisons across 

regions; therefore, there was a difference of four days between the MODIS NDVI-predicted 

dates for the end of the growing season. The end of greenness was November 7th in 2009, 

November 6th in 2010 and 2011, November 4th in 2012, and October 29th in 2013.  The end of 

the growing season is traditionally regarded as the date of first frost, whereas the end of 

greenness is primarily due to the natural senescence of green vegetation.   

The average date of maximum NDVI value was July 12th (Table 2.6.), which is close to 

the veraison date determined by Cunha et al. (2010). However, the veraison date is highly 

variable, due to factors such as variety and accumulated GDD. Veraison is typically reported to 

occur between 5 and 12 weeks after bud break, depending on the grape variety (Jackson, 2008); 

leading to the high variability of veraison, which may not be evident from the data if only the 

highest values of the NDVI were focused on. The time of maximum NDVI was June 16th in 

2009, July 1st in 2010 and 2013, June 26th in 2011, and September 19th in 2012.  The average 

dates of maximum NDVI, onset of ripening, growing season length, start of growing season, and 

end of growing season are highly dependent on the climate conditions in a given region. Our 

calculated average value of NDVI at the onset of greenness was 0.32, the average value of the 

NDVI at the end of greenness was 0.41, and the average maximum value of the NDVI was 0.55, 

while the average range in NDVI was 0.25. The onset of greenness reported in previous studies 

was 0.36 and the end-of-greenness NDVI value was 0.32 (Cunha et al., 2010).  

The highest time-integrated value of NDVI was 7.22 for a growing season of 248 days 

(2013), while the lowest time-integrated value was 5.01 for a growing season of 193 days (2012; 

Table 2.6.). The average time-integrated value of NDVI was 5.74 for a growing season of 216 
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days.  Time-integrated NDVI is a strong indicator of the net primary production of grapevines 

during a growing season, as time-integrated NDVI is directly related to growing season length: 

the longer the growing season, the higher the time-integrated NDVI. It has also been proven that 

NDVI is related to both vine size (Dobrowski et al., 2002) and fraction cover (Carlson and 

Ripley, 1997); both characteristics are related to planting density within a given vineyard 

(Johnson, 2003). The average green-up and senescence rates were both 0.0035 per day.  

The variation in results is partially a result of the influence of the adjacent land cover 

types over the NDVI values.  Soil moisture status, pruning system, and cover crop type can also 

influence spectral properties of vineyards (Cunha et al., 2010; Zhang et al., 2003).   In addition, 

weather variability is a proven source of variation within NDVI values (Cunha et al., 2010; 

Studer et al., 2007; Ricotta and Avena, 2000; White et al., 2005). 

Future Work 
 

NDVI is strongly tied to the leaf area index (LAI) (Johnson et al., 2001; Johnson et al., 

2003; Dobrowski et al., 2002; Johnson, 2003); thus, NDVI can be transformed into LAI via 

regression analysis (Johnson, 2003). LAI is a good representative of canopy density, and canopy 

density has a proven connection to fruit ripening rate (Winkler, 1958), infestation and disease 

(Wildman et al., 1983; English et al., 1989; Johnson et al., 2012), water status (Smart and 

Coombe, 1983; Johnson et al., 2012), yield (Clingeleffer and Sommer, 1995; Baldy et al., 1996; 

Johnson et al., 2012), and fruit characteristics and wine quality (Smart, 1985; Jackson and 

Lombard, 1993; Mabrouk and Sinoquet, 1998; Johnson et al., 2012). Therefore, future research 

should incorporate the LAI into its phenological analysis.  

Based on our results, further studies should focus on locations surrounded by a more 

homogenous landcover; preferably grapevines or pasture. Vineyards should be established in a 
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given location for more than three years in order to accurately capture the grapevine spectral 

signature. Further, as the spatial resolution of the remote sensing products is also influential on 

the accurate estimation of phenology metrics, there is potential for future studies to utilize our 

methoology, but using finer-resolution remote sensing products.   

 
Conclusions  
 

Utilizing MODIS NDVI data, our study produced several phenological metrics for 

grapevines grown in the Columbia Valley of Washington State. MODIS NDVI satellite images 

have proven viable tools for determining length of growing season, onset of greenness, end of 

greenness, and time of maximum NDVI, especially when there is a lack of access to historical 

phenological data for a region. A growing season of 216 days was obtained, based on the 

MODIS NDVI for the chosen study area; with an average onset of April 2nd, and an average end 

to the growing season of November 4th.  

The evaluation of the MODIS NDVI via the NDVI derived from aerial images revealed 

that the MODIS NDVI had an average overestimation of 0.08; however, this bias does not 

influence temporal NDVI metrics (Table 2.3.; Table 2.6.). Therefore, metrics such as the time of 

onset of greenness, the time of end of greenness, the time of maximum NDVI, and the duration 

of greenness are not affected by the slight overestimation of the MODIS NDVI. However, the 

metrics that take into account the quantity of NDVI, including derived metrics and NDVI value 

metrics (Table 2.3.; Table 2.6.), do inherit the average 0.08 overestimation over the actual NDVI 

of each grape canopy.  

The methods used in our study were able to accurately estimate the relevant phenology 

metrics; still, we recommend that future studies acquire observed phenology metrics comprising 
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several years of data in order to make even more accurate estimates. Additionally, we 

recommend that remote-sensing methods be combined with the use of ground-based 

phenological studies. Also, because the number of test vineyards in this study was limited, we 

suggest that future studies focus on more homogenous regions with larger numbers of assigned 

test vineyards. 
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CHAPTER THREE  

IMPACT OF LAND-COVER TYPE ON THE ESTIMATED NEAR-SURFACE AIR 

TEMPERATURE DERIVED FROM MODIS PRODUCTS2 

Abstract 
 

Precise estimation of near-surface air temperature (Ta) is essential for the study of 

terrestrial ecosystems. However, it is not always a simple task to obtain the Ta for regions with 

high elevations, as there are a limited number of weather stations, especially in remote locations. 

Therefore, the Ta should be estimated using techniques that do not solely rely on weather station 

data. The goal of our study was to use satellite remote sensing products to estimate Ta for an area 

featuring complex terrain, as well as analyze the impact of land cover type on the accuracy of the 

estimated Ta. The normalized difference vegetation index (NDVI) and land surface temperature 

(LST) were obtained from the MODerate resolution Imaging Spectroradiometer (MODIS) 

satellite imagery obtained for the Yakima Valley, in the state of Washington. The estimated Ta 

was then evaluated against the Ta obtained from the North American Land Data Assimilation 

System (NLDAS). The coefficient of determination (R2), average bias, and root mean square 

error (RMSE) for the estimated Ta and the NLDAS Ta were calculated.  The lowest R2 was 

associated with grapes (R2= 0.22), while the highest R2 was associated with fallow cropland 

(R2=0.9). The lowest mean bias was associated with evergreen forest (2.43°C), and the highest 

average bias with woody wetlands (6.68°C). Our study re-confirmed that, to obtain more 

accurate estimates of Ta using remote sensing products, knowledge of the chosen study area’s 

land cover and its properties are required.   

Introduction 
 
                                                 

2 Submitted to the Remote Sensing journal.  
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Near-surface air temperature (Ta) is an important parameter affecting terrestrial 

ecosystems. Ta has many applications in various fields, including ecology, agriculture, 

hydrology, climate variability, and climate change (Vancutsem et al., 2010; WMO, 2008). Ta 

affects plant species distribution (Hoch and Korner, 2005; Randin et al., 2013), and soil-plant-

water system dynamics can also be impacted by Ta (Chartzoulakis and Psarra, 2005; Zavala, 

2004). Ta is a critical component of hydrological and evapotranspiration models (Allen et al., 

1998; Carlson et al., 1995; Purkey et al., 2007; Yates et al., 2005). Ta also influences phenology, 

as well as photosynthesis and respiration rates; thus, plant growth and net primary production are 

also influenced by Ta (Bustos and Meza, 2015).  

Traditionally, air temperature is recorded by weather stations, with a thermometer 

typically installed 2 m above the soil surface. Weather stations are usually distributed 

heterogeneously within a region (Abatzoglou, 2011; Lu et al., 2009; Jabot et al., 2012; Minder et 

al., 2010; Marquinez et al., 2003; Vancutsem et al., 2010);  thus, a weather station may not 

represent its surrounding environment very accurately (Pielke et al., 2007; Jiménez et al., 2010; 

Menne and Williams Jr., 2009). In addition, surface properties that vary both in space and time 

control the spatiotemporal patterns of air temperature (Prihodko and Goward, 1997); as a result, 

each weather station is only capable of representing a very small region, especially those located 

within complex terrain.  

Regions containing areas of complex terrain with high elevations usually have limited 

accessibility; thus, the number of weather stations in those regions are even smaller. The limited 

number of weather stations at high elevations thereby hinders the accurate estimation of the 

spatial variation of Ta.  Ta records can be spatially interpolated and/or extrapolated to create a 

spatial weather dataset; however, the accuracy of the interpolated spatial dataset can prove 
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unsatisfactory, as Ta is influenced by local parameters such as elevation, sun exposure, 

topography, and proximity to bodies of water (Marquinez et al., 2003; Flores P. and Lillo S., 

2010; Van De Kerchove et al., 2013; Marques da Silva et al., 2015).  

It has been shown that the spatial and temporal resolutions of the Ta measurements play 

an important role in our understanding of global weather dynamics (Willmott and Robeson, 

1991; Madden et al., 1993; Karl et al., 1994; Robeson, 1995). To fill in the gap of the measured 

Ta caused by scattered and unevenly distributed weather stations, satellite data can be 

incorporated as an ancillary source.  Satellite remote sensing provides spatially contiguous data 

that are consistently available on a regular basis (Seguin, 1991); however, this is not always true 

of meteorological measurements (Prihodko and Goward, 1997). The spatial and temporal 

resolution of weather data has been improved by the advent of satellites (Vancutsem et al., 2010; 

Running et al., 2004); and previous studies have shown that Ta can be estimated from satellite 

data (Vancutsem et al., 2010; Dash, 2002; Norman and Becker, 1995; Prihodko and Goward, 

1997; Prince et al., 1998; Lin et al., 2012). Prior studies have also utilized thermal remote 

sensing to derive near-surface air temperatures (Chokmani and Viau, 2006; Jang et al., 2004).  

There is a need for accurate weather information at the regional and even the continental 

level, to ensure the necessary weather parameters are accessible at both fine spatial and temporal 

resolutions. These datasets are required inputs for environmental, agricultural, and economical 

models. In regions with limited access to ground-based meteorological observations, spatial 

weather data can be partially derived from satellite-based remote sensing data as a means of 

compensating for the lack of observations.  The aim of our study was the estimation of the Ta in 

an area comprising complex terrain, using satellite remote sensing and vegetation indices. An 
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additional objective was the determination of the impact of land cover type on both estimated 

and observed Ta. 

Methods 

Study Area 
 

The study area was located in the Yakima Valley of the state of Washington, the United 

States, within a latitudinal range of 47°19′20″N to 45°32′23″N and a longitudinal range of 

121°20′21″W to 119°2′59.99″W. This area includes complex terrain, with the Cascade 

Mountains to the west, the Wenatchee Mountains to the north, Rattlesnake Mountain and the 

Rattle Snake Hills to the east, and the Horse Heaven Hills to the south. The area is approximately 

15,900 km2 (Figure 3.1.) with elevations ranging from 50 m to 1,970 m.  

 

Figure 3. 1. Study area (Yakima Valley, Washington, USA). 
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The Yakima Valley is famous for the diversity of its agricultural production. As an 

agricultural and crop production region, knowledge of the dynamics of Ta patterns, especially 

during the growing season, can help growers and decision-makers apply best management 

practices such as frost controls or the irrigation managemnet at the most opportune times. In 

cases where risks such as frequent frost events are associated with extreme values of Ta, 

appropriate measures can be taken to minimize any potential damage to crops or livestock. The 

dominant land cover in the study area is shrubland, evergreen forest, pasture, and intensive 

specialty-crop production, including apples (Malus domestica), cherries (Prunus avium), grapes 

(Vitis spp.), and hops (Humulus lupulus) (Table 3.1.). 
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Table 3.1.The major land covers present in the study area extracted fromland cover map 2010 
(within a grid super-imposed on the Yakima Valley, Washington, U.S.A). 

Land Cover Area (%) Area (km2) 

Shrubland 41.61 94.42 

Evergreen Forest 23.24 52.75 

Grass/Pasture 10.72 24.33 

Alfalfa 2.93 6.64 

Winter Wheat 2.43 5.50 

Fallow/Idle Cropland 2.29 5.20 

Maize 2.18 4.94 

Developed/Open Space 1.67 3.79 

Developed/Low Intensity 1.64 3.72 

Open Water 1.50 3.39 

Grapes 1.16 2.62 

Apples 1.09 2.48 

Potatoes 1.00 2.26 

Other Hay/Non Alfalfa 0.97 2.21 

Spring Wheat 0.96 2.17 

Woody Wetlands 0.54 1.22 

Cherries 0.53 1.21 

Herbaceous Wetlands 0.53 1.19 

Developed/Med Intensity 0.51 1.16 

Sweet Corn 0.40 0.91 

Dry Beans 0.36 0.83 

Peas 0.29 0.65 

Barren 0.27 0.61 

Onions 0.19 0.43 

Hops 0.19 0.42 

Pears 0.13 0.30 

Sod/Grass Seed 0.12 0.26 

Developed/High Intensity 0.08 0.18 

Herbs 0.08 0.18 

Asparagus 0.07 0.16 

Carrots 0.06 0.14 
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Moderate Resolution Imaging Spectroradiometer (MODIS)   

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument onboard the 

NASA Terra satellite (NASA 2012) has a spatial resolution ranging from 250 m to 1 km.  For 

any location in the northern hemisphere, the Terra satellite overpass is approximately 10 am 

local time. The spectral bands (36 bands) of this instrument enable accurate monitoring of the 

global terrestrial ecosystems as they were chosen because of the spectral properties of the major 

physiological phenomena of plants (Barnes et al., 1998; Justice et al., 2002). Detailed 

background information on MODIS products can be found in Justice et al. (2002); Guenther et 

al. (2002); and Morisette et al. (2000). MODIS products are available for free download, 

including derived products such as vegetation indices (NASA, 2012). 

MODIS images were used for this study due to their high temporal resolution (daily), and 

were obtained from the NASA (Land Processes Distributed Active Archive Center) website 

(NASA, 2012). We used the 2010 images that spatially covered the study area; daily Land 

Surface Temperature (LST) images were also available for 2010, comprising a total of 365 

values. However, there was variation in the number of pixels that contained useful information as 

a result of clouds affecting the available data by the satellite sensor.  

  The NDVI images were condensed into 16-days image composites based on the 

assumption that daily changes in the NDVI are not significant. The 16-day composites of the 

NDVI were available twice per month throughout 2010. The 16-day NDVI composite images 

were initially mosaicked because the Yakima Valley is covered with more than one MODIS tile; 

they were then re-projected using the MODIS Reprojection Tool (MRT) (NASA, 2012). The 

Yakima Valley region was covered by the images at a grid size of 0.01 arc degree.    
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The Normalized Difference Vegetation Index (NDVI) 

The Normalized Difference Vegetation Index (NDVI) is the most commonly used 

vegetation index in environmental studies (Goward et al., 1985; Tucker et al., 1986; Fung et al., 

1987; Nemani and Running, 1989; Tucker et al., 1991; Pettorelli et al., 2005; Chen et al., 2004; 

Son et al., 2012; Badr and Hoogenboom, 2013; Badr et al., 2015). Previous studies have shown 

the potential uses of NDVI in the study of vegetation dynamics (Townshend and Justice, 1986; 

Verhoef et al., 1996; Running, 1990; Myneni et al., 1995; Pettorelli, 2013; Badr and 

Hoogenboom, 2013; Badr et al., 2015). The effect of weather on biomass and phenology has 

been assessed using NDVI (Nemani et al., 2003; Roerick et al., 2003; Zhou et al., 2003; Zhao 

and Schwartz, 2003; Wang et al., 2003; Pettorelli et al., 2005; Pettorelli, 2013). 

Rouse et al. (1974) defined NDVI as follows (Equation 3.1.): 

rednir

rednirNDVI
ρρ
ρρ

+
−

=
        (3.1.) 

where represents the reflectance at the near infrared region of the spectrum (0.7 –1.1 µm) 

and  denotes the reflectance at the red wavelengths (0.6–0.7 µm).  

A near-linear relationship between the NDVI and an intercepted fraction of 

photosynthetically-active radiation has been reported (Asrar et al., 1984; Sellers, 1985). The 

NDVI is highly correlated with photosynthetic capacity, net primary production, Leaf Area Index 

(LAI), carbon assimilation, and evapotranspiration (Myneni et al., 1995; Buermann et al., 2002; 

Hicke et al., 2002; Wang et al., 2005; Pettorelli, 2013). It is also a reliable means of measuring 

photosynthetically-active biomass (Tucker and Sellers, 1986; Los, 1998; Turner et al., 1999; Hill 

and Donald, 2003), and is also capable of estimating vegetation quantity and greenness (Walsh et 

al., 1997; Walsh et al., 2001; Pettorelli, 2013). 
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Land Surface Temperature (LST) 

The LST product from MODIS is considered a measurement of the surface or “skin” 

temperature of the outer layer of the Earth (Wan et al., 2004a, b; Sims et al., 2008; Hashimoto et 

al., 2008), and can therefore represent the surface temperature of anything scanned by satellite 

sensor, including a swimming pool or the top of a grape canopy. Given a particular microclimate, 

Ta and LST can essentially simulate the effect of a plant canopy.  Thus, if the LST is known for a 

specific plant canopy although the Ta is unmeasured, the LST can be used as an estimator of the 

Ta for that particular plant canopy.  A dense canopy has the ability to cancel out any signal 

attempting to reach the sensor from the soil; therefore, the Ta for such a dense canopy must be 

estimated from the LST (Sims et al., 2008; Yan et al., 2011; Petropoulos et al., 2009). The 

correlation between Ta and LST is potentially a useful tool for the estimation of Ta, especially in 

areas where geographical features limit accessibility (Colombi et al., 2007). 

Air Temperature  

Several studies have used LST for estimating Ta (Zakšek and Schroedter-Homscheidt, 

2009; Mostovoy et al., 2006; Zhang et al., 2011; Colombi et al., 2007); however, we chose to 

focus on approaches that utilized temperature-vegetation indices (Saravanapavan and Dye, 1995; 

Prihodko and Goward, 1997; Czajkowski et al., 2000; Wloczyk et al., 2011). The temperature-

vegetation index (TVX method), also referred to as the contextual method, relies on red, near-

infra-red, and thermal bands to map air temperature. This approach assumes the quantity of the 

vegetation expressed by the NDVI is linearly correlated with the LST (Zakšek and Schroedter-

Homscheidt, 2009).  

The temperature at the top of a canopy is assumed to be the same as that within a thick 

vegetation canopy for which the LAI tends to be infinite.  When an area is mainly covered with 
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vegetation, the radiation emitted by the soil cannot reach the satellite sensor and can thus be 

ignored. Hence, the temperature recorded by the sensor can then become associated with the 

temperature of the canopy cover (Jackson et al., 1988). A dense plant canopy characterized by a 

high NDVI value is so structured that it leads to maximum heat diffusion (Gates, 1968; Geiger et 

al., 1995); causing the non-stressed canopy cover to have a tendency of reaching thermal 

equilibrium with the adjacent air. Prior studies have shown that the LST of pixels within dense 

covers of vegetation are a reliable approximation of the surrounding air temperature (Bustos and 

Meza, 2015).  

The NDVI has been used for estimating Ta because it is known that land cover type and 

soil conditions influence the heat exchange between land-surface and near-surface atmosphere 

(Nemani and Running, 1989; Goward et al., 1994; Prince and Goward, 1995). It has been 

indicated that the air temperature is induced to be below canopy temperature due to a small 

canopy heat flux (Stisen et al., 2007). This canopy heat flux is inversely related to the LAI, and 

directly related to lowest leaf stomatal resistance (Monteith, 1973); however, this sensible heat 

flux will be negligible when the LAI tends to the infinite (Allen et al., 2006; Noilhan and 

Planton, 1989).  

Carlson et al. (1995) derived Ta directly from an NDVI-Ts scatter plot using the 

assumption that the Ta can be approximated via the surface temperature of an infinitely thick 

vegetation cover.  The study assumed that a high NDVI value is representative of a dense 

canopy. Colombi et al. (2007) used correlation analysis and equation generalization for spatial 

distribution to define the relationship between the LST and the Ta. Blum et al. (2013) reported 

that MODIS thermal images estimated the canopy temperature of an olive grove more accurately 

than that provided by the interpolated data from weather stations. Bustos and Meza (2015) used 
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the LST provided by MODIS to estimate the maximum and minimum temperatures of the Maipo 

Basin in Chile. Only pixels with high NDVI scores were used, in order to ensure that the surface 

and Ta of the pixels were similar. Bustos and Meza (2015) evaluated the LST of the selected 

pixels using the observed Ta from local meteorological stations, and reported no significant 

differences in the estimated and observed Ta, except in urban areas. They ascribed the observed 

differences in the urban areas to being a result of heat island phenomenon. 

In our study, a regression relationship was established between the LST and the NDVI 

(both products of MODIS), and the slope (b) and intercept (a) from the regression equation were 

then obtained (Equation 3.2.) (Wang et al., 2001; Sun and Kafatos, 2007; Price, 1990; Carlson et 

al., 1995).  

                                              bNDVIaLST += )(                   (3.2.) 

Subsequently, the LST was used to estimate the Ta, based on the assumption that the LST 

of a dense canopy is close to the Ta of that canopy (Prihodko and Goward, 1997; Riddering and 

Queen, 2006). Prihodko and Goward (1997) measured leaf reflectance and transmittance for 

various species of vegetation, deriving an NDVImax of 0.86 using the radiative transfer model. In 

our study the NDVImax of vegetation with a dense canopy was assumed to be 0.86, based on the 

previous studies (Prihodko and Goward, 1997; Riddering and Queen, 2006; Hong et al., 2009; 

Lakshmi et al., 2011).   In the next phase (Equation 3), the LST was calculated as a function of 

NDVImax, with the slope (b) and intercept (a) having already been obtained in the previous set of 

regressions (Figure 3.2.).          

                aTbNDVIaLST ≈+= )( max               (3.3.) 
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Figure 3. 2. Flowchart summarizing the methodology used in this study. 

 

North American Land Data Assimilation System (NLDAS) 

 

In this study the North American Land Data Assimilation System (NLDAS) was used to 

evaluate the estimated Ta, as it results in the creation of continuous spatial surfaces for the 

estimated Ta. By adopting the NLDAS dataset as the evaluation dataset, there was no longer a 

need to employ spatial interpolation techniques, as the NLDAS data is spatially continuous. This 

allowed us to avoid any added bias that could potentially be introduced via interpolation 

techniques. 
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The NLDAS was initially developed as a real-time retrospective data assimilation system 

for providing land surface states in land-ocean-atmosphere models (Mitchell et al., 2004; Xia et 

al., 2012).   NLDAS includes four land surface models (LSMs): Noah (Ek et al., 2003), Mosaic 

(Koster and Suarez, 1996), Sacramento Soil Moisture Accounting (SAC-SMA) (Burnash et al., 

1973; Burnash, 1995), and Variable Infiltration Capacity (VIC) (Liang et al., 1994). It has a 

spatial resolution of 1/8 ° grid over the continental United States, and a temporal resolution of 

one hour.  The NLDAS has been evaluated using the measurement of energy fluxes, surface 

meteorology, soil moisture and temperature, mountain snowpack from surface stations, daily 

stream flow observations, satellite-derived land surface temperature (LST), and snow cover 

(Mitchell et al., 2004; Luo et al., 2003; Cosgrove et al., 2003). 

The initial assessment of the NLDAS 

  The Ta from the NLDAS dataset was initially assessed by comparing it to the observed Ta 

obtained from Remote Automated Weather Stations (RAWS) (Table 3.2.).  RAWS stations are 

distributed throughout the U.S. and monitor the weather continuously (RAWS, 2015). A total of 

eight RAWS stations located in the Yakima Valley were selected, and Ta observations were 

obtained for the period of study, depending on the number of days data was available for 2010. 

The total number of available observations was variable for each station during 2010, adding to a 

total number of 668 observations. The time of all observations was approximately 10 am local 

time, based on the overpass time of the MODIS satellite.  The Ta from NLDAS was compared 

with the RAWS Ta and the coefficient of determination (R2) determined for each location.  The 

average bias (the average difference between the observed and estimated Ta), Root Mean 

Squared Error (RMSE), and Mean Absolute Bias (ME) were also calculated. 
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  Land cover data 
 

Information regarding the type of vegetation cover in the study area was requisite since 

our method was based on the NDVI, although some studies have used LST to indirectly relate 

land cover to Ta (Karnieli et al., 2010; Cheng et al., 2008; Mostovoy et al., 2008). The land cover 

type was obtained from the 2010 Cropland Data Layer (CDL) (Table 3.2.). The CDL is a raster, 

geo-referenced, crop-specific land cover data layer with a 30m spatial resolution based on 

moderate-resolution satellite imagery (Landsat 5, Landsat 7 and Indian Remote Sensing 

Advanced Wide Field Sensor images) with extensive agricultural ground trothing. It is produced 

annually for the continental U.S.A. (Figure 3.1.) (Boryan et al., 2011; Boryan et al., 2012; Han et 

al., 2012). 

Table 3.2. The Remote Automated Weather Stations (RAWS) located within Yakima Valley, 
Washington, USA, that were used for evaluation of North American Land Data Assimilation 
System (NLDAS) temperature data. 

Station Name Latitude 
(N) Longitude (W) Elevation 

(m) Major land-cover County Closest city 

Signal Peak 46° 13' 37" 121° 08' 15" 1540 Developed (Low Intensity) Yakima White Swan 

Sawmill Flats 46° 58' 07" 121° 04' 07" 1067 Evergreen Forest Kittitas Cliffdell 

Sedge Ridge 46° 29' 42" 121° 00' 48" 1311 Evergreen Forest Yakima Ahtanum 

Tepee Creek 46° 09' 47" 121° 01' 56" 908 Evergreen Forest Yakima Glenwood 

Buck Creek 46° 03' 24" 121° 32' 19" 820 Grass/Pasture Skamania Trout lake 

YTC-RC 46° 40' 31" 120° 20' 50" 613 Shrubland Yakima Selah 

Highbridge 46° 04' 52" 120° 32' 37" 642 Shrubland Yakima White Swan 

Mill Creek 46° 15' 45" 120° 51' 44" 860 Shrubland Yakima White Swan 

 

Results and Discussion 

Initial assessment of the NLDAS 
 

The Ta recorded at 10 am daily by RAWS stations across the Yakima Valley were 

compared with the Ta obtained from the NLDAS (also recorded at 10 am daily). The average Ta 

(Tavg) for the days the RAWS stations were available during 2010 was 16.8°C, while the average 
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NLDAS Tavg during 2010 was 15.8 °C (Table 3.4.). This resulted in an average bias of -1.0 °C 

and an RMSE of 2.8°C for 2010 (Table 3.5.). The minimum and maximum Ta for both RAWS 

and NLDAS were also obtained and their differences determined. In 2010, the total number of 

available records for each RAWS station was variable; therefore, we only used the days during 

2010 for which the RAWS data actually existed (Table 3.3.).  
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Table 3.3. The average elevation, total sample size (availability of MODIS products), total 
number of sampling locations (points or grids, left corner), and total number of days in 2010 
(MODIS products used) for each land cover type in Yakima Valley, Washington. 

Land cover type Average elevation (m) 
Sample size 

 ( # locations* # days) 

 

Number of 
sample locations 

 Number of 
available days 
MODIS products 
were available 
during 2010 

Shrubland 726 9106  195  47 

Evergreen forest 564 4475  98  46 

Spring wheat 458 147  30  5 

Pasture/grass* 696 1070  22  49 

Alfalafa 346 853  16  53 

Maize 317 815  15  54 

Pasture/hay 665 724  14  52 

Grassland /herbaceous* 875 443  11  40 

Winter wheat 571 400  8  50 

Fallow/Idle Cropland 633 324  7  46 

Developed low intensity 1051 212  5  42 

Developed open space 829 216  5  43 

Open water 451 243  5  49 

Cherries 701 203  4  51 

Herbaceous wetlands 1158 90  3  30 

Peas 956 80  2  40 

Potatoes 929 89  2  45 

Developed medium 
intensity 1087 84  2  42 

Dry beans 870 131  2  66 

Woody wetlands 1404 52  2  26 

Grapes 382 85  2  43 

Asparagus 1396 23  1  23 

Carrots 951 20  1  20 

Apples 392 53  1  53 

Sweet corn 342 54  1  54 

Hops 1130 38  1  38 

Pears 539 54  1  54 

Average 756.26 743.85  16.89  44 

Total  20084  456  1159 
* Pasture/grass land-cover refers to areas covered with grasses, legumes, or grass-legume mixtures planted for livestock grazing or the 
production of seed (USGS, 2015).  
*Grasslands/herbaceous refers to areas dominated by upland grasses and forbs. In rare cases, herbaceous cover is less than 25 percent, but 
exceeds the combined cover of the woody species present. These areas are not subject to intensive management; but are often utilized for 
grazing (USGS, 2015).  
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The mean R2 between the Ta obtained from the RAWS stations and the Ta acquired from 

the NLDAS was 0.91, with a range from of 0.84 to 0.97 (Table 3.5.). These results confirmed 

that the NLDAS provides a robust performance compared to the observed meteorological 

records, and can therefore be used as a substitute for weather station records in our study area. 

However, it should be noted that it does contain a small amount of noise that is not present in the 

observed data. 

 
Table 3.4. Tavg from the Remote Automated Weather Stations (RAWS) and the North American 
Land Data Assimilation System (NLDAS) for the period that the data was available, their 
difference (Dif= NLDAS-RAWS), the Tmax and Tmin for the RAWS and NLDAS data, and their 
respective difference (bias). The number of observations used from each station is also reported.  
Stations  Tavg (°C)   Tmax (°C)   Tmin (°C)    

RAWS NLDAS Dif RAWS NLDAS Dif RAWS NLDAS Dif # 
observations 

Sawmill Flat  19.1 16.0 -3.1 30.6 24.7 -5.9 5.6 7.6 2.0 79 

YTC-RC 23.1 21.4 -1.8 32.8 30.3 -2.5 10.6 8.8 -1.8 70 

Highbridge 18.8 15.8 -3.1 32.2 28.9 -3.3 0.6 1.0 0.4 104 

Sedge Ridge 12.5 11.7 -0.8 25.0 23.9 -1.1 -3.3 -2.9 0.4 104 

Mill creek 17.5 18.3 0.8 31.1 30.6 -0.5 1.7 4.5 2.8 104 

Tepee creek 14.7 14.0 -0.7 28.3 26.3 -2.0 0.6 -0.7 -1.3 104 

Signal peak 12.2 13.3 1.2 24.4 25.3 0.9 -4.4 -1.3 3.2 103 

Average 16.8 15.8 -1.1 29.2 27.1 -2.1 1.6 2.4 0.8 95 
 
 

Previous studies have evaluated NLDAS data by comparing it with weather station 

observations, and have reported a bias of -0.5°C, RMSE of 2.3°C, and an R2 of 0.98 (Luo et al., 

2003). The slight differences observed in the bias, RMSE, and R2 noted in the results of this and 

previous studies is attributable to several facts, including the number of stations, and the total 

number of observations (668 total observations in this study vs. 12,861 observations in Luo et 

al., 2003), as could the complexity of the terrain used in our study compared with that of the Luo 

et al. (2003). This study was conducted in Plevna, Kansas, a relatively flat area, especially when 



65 
 

compared with the Yakima Valley. Based on these results, and because of the fact that the 

NLDAS data provides a continuous surface, we utilized it for the evaluation of the estimated Ta. 

 
Table 3.5. Comparison between the NLDAS Ta and the Observed Ta using RAWS (R2, Mean 
Absolute Bias, and RMSE). 

RAWS Station R2 Mean Absolute Bias (°C) RMSE(°C) # observations 
Sawmill Flat 0.89 -3.1 3.6 79 

YTC-RC 0.93 -1.8 2.4 70 
Highbridge 0.96 -3.1 3.5 104 

Sedge Ridge 0.97 -0.8 1.6 104 
Mill Creek 0.86 0.8 3.1 104 

Tepee Creek 0.84 -0.7 3.2 104 
Signal Peak 0.92 1.2 2.5 103 

Average 0.91 -1.1 2.8 95 
 
 

Land cover and estimated Ta 
 

The estimated Ta based on the MODIS LST was compared with the Ta obtained from the 

NLDAS for the land-cover types that are present in the study area. The average estimated Ta 

based on MODIS LST was 23.7 °C for 2010 and the average Ta from the NLDAS was 19.4°C for 

2010 (Figure 3.3.). The average bias between the estimated and the observed Ta was 4.3 ± 1.4 

°C. The R2 between the estimated Ta based on MODIS LST and the NLDAS Ta had a range of 

0.2 to 0.96, with an average R2 of 0.63 (Table 3.6.).   
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Figure 3.3. Comparison of the 2010 estimated and observed mean temperatures of the dominant 
land covers in our study area. 

 

The variability within the R2 values is explained by the heterogeneity of the land cover 

types. Stisen et al. (2007) reported an average R2 of 0.64 using the Spinning Enhanced Visible 

and Infrared Imager (SEVIRI), which is a part of the sensors of the geostationary Meteosat 

Second Generation (MSG) satellite. The calculated R2 between the estimated Ta based on 

MODIS LST and the NLDAS Ta is in agreement with the average R2 reported by Stisen et al. 

(2007). Zhang et al. (2011) reported a minimum R2 of 0.57 for the correlation between the LST 

and Ta. Although we converted the MODIS LST to Ta by employing the MODIS NDVI values 



67 
 

we acquired during this study, the calculated R2 between the estimated Ta based on the MODIS 

NDVI and the NLDAS Ta was close to the value reported by Zhang et al. (2011). 

The land cover type had a significant impact on the estimated Ta (p-value = 0.0019). 

Initially, the Ta was estimated by combining the MODIS LST with the MODIS NDVI; however, 

because land cover type has a direct impact on NDVI, we anticipated a substantial impact of the 

land cover type on the results.  Shen and Leptoukh (2011) also reported the strong influence of 

land cover type on the relationship between the Ta and LST when the Ta is at its highest daily 

value.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.6. Accuracy measures for study areas’ land cover types (based on the comparison 
between the estimated Ta and the Ta obtained by NLDAS). 

Land-cover 
type 

Average 
 R2 

Error 
margin 

Mean 
Absolute 
Bias (°C) 

Error 
margin 

Absolute 
Bias 
(%) 

Average  
Bias (°C) 

Error 
margin 

Average 
Bias 
(%) 

RMSE(°C) 
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Fallow/Idle 
Cropland 0.90 ±0.05 6.34 ±5.97 1.96 3.88 ±7.78 1.20 9.4 

Asparagus 0.85 ±0.00 4.90 ±3.69 21.30 4.23 ±4.45 18.39 6.1 
Grassland 
Herbaceous 0.83 ±0.07 5.59 ±6.22 1.26 4.14 ±8.09 0.93 9.4 

Peas 0.81 ±0.01 5.23 ±5.23 6.54 3.58 ±6.37 4.48 5.6 

Carrots 0.80 ±0.00 4.65 ±3.63 23.25 4.08 ±4.26 20.40 5.9 
Developed 
(low 
intensity) 

0.76 ±0.10 6.21 ±5.90 2.93 4.25 ±7.28 2.00 7.9 

Apples 0.74 ±0.00 6.53 ±4.27 12.32 5.65 ±5.40 10.66 7.8 
Herbaceous 
wetlands 0.73 ±0.10 7.05 ±5.37 7.83 4.67 ±5.41 5.19 6.0 

Cherries 0.72 ±0.12 6.00 ±5.88 2.96 4.18 ±7.64 2.06 6.2 

Maize 0.71 ±0.20 6.17 ±5.95 0.76 3.17 ±7.76 0.39 5.8 

Sweet corn 0.70 ±0.00 5.07 ±3.70 9.39 4.77 ±4.07 8.83 6.3 

Alfaalfa 0.68 ±0.24 5.88 ±5.95 0.69 3.85 ±7.73 0.45 6.9 
Winter 
wheat 0.67 ±0.15 6.37 ±5.98 1.59 6.16 ±7.79 1.54 8.7 

Potatoes 0.67 ±0.19 6.24 ±6.35 7.01 2.55 ±8.39 2.87 4.6 

Pasture/grass 0.66 ±0.24 5.98 ±5.94 0.56 5.63 ±7.69 0.53 10.4 

Hops 0.65 ±0.00 4.77 ±3.77 12.55 3.17 ±5.21 8.34 6.1 

Shrubland 0.61 ±0.25 5.99 ±5.99 0.07 4.20 ±7.76 0.05 10.2 
Evergreen 
forest 0.58 ±0.24 6.09 ±5.93 0.14 2.43 ±7.70 0.05 5.7 

Developed 
(medium 
intensity) 

0.57 ±0.26 6.55 ±6.03 7.80 3.03 ±7.73 3.61 11.4 

Pasture/hay 0.56 ±0.19 6.37 ±6.30 0.88 4.51 ±8.21 0.62 6.8 

Dry beans 0.55 ±0.10 6.43 ±6.42 4.91 3.01 ±8.38 2.30 6.0 
Woody 
wetlands 0.51 ±0.25 7.29 ±7.03 14.02 6.68 ±9.15 12.85 8.8 

Pears 0.45 ±0.00 5.63 ±3.98 10.43 5.20 ±4.53 9.63 6.9 
Developed 
(open space) 0.40 ±0.29 5.90 ±5.94 2.73 5.42 ±7.71 2.51 7.9 

Spring wheat 0.34 ±0.30 6.39 ±6.12 4.35 3.53 ±7.86 2.40 9.0 

Grapes 0.22 ±0.24 6.66 ±6.44 7.84 3.21 ±8.37 3.78 6.1 

Average 0.64 ±0.14 6.01 ±5.54 6.39 
 4.29 ±7.03 4.85 7.4 

 

Impact of radiative factors on the estimated Ta 

The radiative behavior of the various land cover types also influenced variation amongst the 

estimated Ta. The variety of available vegetation types in the study area, their pigments, as well 

as their reflection coefficients (albedo) should also be taken into account when discussing 

estimated air temperature (Gates, 1980; Monteith and Unsworth, 2013). The reflection 
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coefficient was reported to be 22% for maize (Zea mays L.) (Monteith and Unsworth, 2013), and 

the results of our study indicated that when the estimated Ta was compared to the observed Ta, 

the average bias was 3.17°C with an RMSE of 5.8°C (Table 3.6.). For wheat (Triticum aestivum 

L.), the reflection coefficient was reported as 26% (Monteith and Unsworth, 2013), and the 

results of our study indicated an average bias of 3.53°C with an RMSE of 9°C when the 

estimated Ta was compared with the observed Ta. The slightly higher bias and RMSE for the 

wheat land cover can be partially attributed to its higher surface albedo, which causes it to reflect 

the incoming radiation from the sun to a higher degree than the maize. This causes its surface to 

heat at a slower pace compared to the air temperature surrounding it, leading to a higher degree 

of discrepancy between the estimated and observed Ta. It should also be noted that, at the end of 

season and during senescence, plant browning also affects the reflection coefficient of plants 

compared to bare soil (Sacks and Kucharik, 2011), and can therefore impact the net radiation of 

the land cover as well as the heat flux, which in turn can cause the near-surface air temperature 

to be cooler or warmer than the surface, depending on the season.  However, this is not the only 

factor contributing to these differences, and it is recommended that future studies use MODIS 

albedo products (Schaaf et al., 2011; Schaaf et al., 2002; Wang et al., 2012; Lucht et al., 2000; 

Wanner et al., 1997), along with similar methods, to address the impacts of vegetation type on 

the estimated Ta.  

Impact of aerodynamic factors on the estimated Ta 

Leaf orientation and canopy architecture also affect the relationship between air and surface 

temperatures (Wloczyk et al., 2011). Geiger et al. (1995) reported that the upright growing habit 

of plants forces the enclosed air to act as insulation, causing the air temperature and canopy 

(surface) temperature to be similar.  Use of NDVI to estimate the Ta makes the results sensitive 
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to the density of the plant canopy; however, small, scattered, and open canopies found in 

grasslands and peas had a higher R2 compared to the denser canopies of evergreen forests (Table 

3.6.; Figure 3.4.).   
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R2=0.72 
n=203 
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Figure 3. 4. The correlation between estimated Ta and Ta from the NLDAS for major land cover 
types: Maize (a); Evergreen forest (b); Pasture (c); Winter wheat (d); Alfalfa (e); Dry beans (f); 
Cherries (g); Grapes (h); Pears (i); Shrublands (j).  
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We divided the major land cover types into two primary groups: woody plants and 

herbaceous plants. The average R2 for woody plants was 0.55 and the average R2 for herbaceous 

plants was 0.68. The average R2 for “Developed” land was 0.58, while the average R2 “Fallow” 

land cover was 0.9. The percent absolute bias and percent average bias were also computed 

(Table 3.6.), and the results indicated that the percent absolute bias is 6.8°C for woody plants, 

6.9°C for herbaceous plants, 4.5°C for developed land cover, and 2°C for fallow land cover. The 

percent average bias was also computed for these four groups, and the results indicated that the 

percent average bias for woody land cover was 5.6, for herbaceous land cover it was 5.2, for 

developed land it was 2.7, and for fallow land it was 1.2. The results also showed that fallow 

land had the lowest bias and the highest coefficient of determination when compared with other 

land cover types. Therefore, the results imply that the assumptions made in this paper are able to 

more accurately capture regions with sparse vegetation, such as fallow land, and may need 

modification and/or adjustment in order to capture the temperature of regions with vegetation 

covers that have different structures and properties. By dividing the major vegetation land covers 

into two groups and excluding fallow and developed land, the average bias for woody vegetation 

was 4.5°C, whereas the average bias for herbaceous vegetation was 4.1°C.   

Impact of water relations on the estimated Ta 

The highest bias was observed for woody wetlands (6.7°C). This high bias is closely 

related to the ecosystem of wetlands, especially specific properties of their soil and the 

availability of surface water. Wetlands are saturated with water and their vegetation type is 

mainly composed of aquatic plants; these differences may be contributing to a higher bias. The 

average bias was 4.2°C for all the land cover of this type in our study area.  

.  
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An average difference of 4.2°C between the LST and the observed air temperature was 

reported by Bustos and Meza (2015). They attributed the over-estimation of the results to a 

decrease in canopy vapor flow as a result of the simultaneous occurrence of high temperatures 

and low soil-moisture conditions. This implies a decrease in the gas exchange rate of the 

stomata, creating a high vapor pressure deficit (Ehrler et al., 1978; Jackson et al., 1981; 

Duffkova, 2006), and decreasing vapor flow at the canopy level (Vitale et al., 2007). Eventually, 

the rate of carbon assimilation decreases and the surface temperature increases (Bustos and 

Meza, 2015). Plants and canopies under water stress tend to close their stomata; consequently, 

the leaf temperature increases as some of the cooling power of transpiration is lost (Zavala, 2004; 

Vitale et al., 2007; Bustos and Meza, 2015).  

Previous studies revealed that the uncertainty associated with NDVI measurements from 

AVHRR images can lead to air temperature errors of 4°C (Prihodko and Goward, 1997), as well 

as the bias associated with the observed air temperature (Czajkowski et al., 1997). Thus, part of 

the bias in the results of our study may have been caused by the same sources. The fact that 

growers control the canopy water status as well as the canopy temperature via irrigation might be 

a contributing factor in the reduced bias that occurs during summer in the Yakima Valley region. 

In winter and early spring there is usually no canopy cover for most crops, so the LST is mainly 

influenced by soil and other permanent land covers. 

Impact of turbulent heat flux on the estimated Ta 

The various heating and cooling properties of the different types of land cover have an 

impact on the LST (Sohrabinia et al., 2012); our results showed that permanent evergreen 

vegetation, such as evergreen forest, had the lowest bias (2.4°C) (Table 3.6.), followed by potato 
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(Solanum tubersum L.) fields with a bias of 2.5°C (Table 3.6.). The low bias of evergreen forest 

confirms the previous results on smaller canopy heat flux when the LAI tends to the infinite 

(Allen et al., 2006; Noilhan and Planton, 1989). The differences in impact of the vegetation in 

the distribution of bias within our applied methods can be explained to some extent by variability 

in the emissivity of each type of land cover. Chemical composition, water content, structure, and 

surface roughness also influence emissivity (Snyder et al., 1998; Weng et al., 2004). Vegetation 

emissivity is largely controlled by the plant species, its growth stage, and its areal density 

(Snyder et al., 1998; Weng et al., 2004). The average emissivity for different land cover types 

can also influence their heating and cooling properties. For instance, maize has an emissivity of 

0.963 (Wittich, 1997), and the results of our study indicated that the average bias was 3.17°C and 

the average  RMSE was 5.8°C (Table 3.6.) when the estimated Ta was compared to the observed 

Ta.  However, for a land cover type with higher emissivity, such as spring wheat (Wittich, 1997) 

(ɛ=0.984), the average bias was 3.58°C and the RMSE was 9°C. Therefore, higher emissivity 

leads to higher RMSE, which can be partially explained by the higher emissivity of the land 

cover, which then leads to higher surface temperature, which may have a greater difference with 

the air temperature at the same location.  Since the emissivity of all land cover types in this the 

Yakima Valley unknown, it should be acknowledged that, based on previous studies (Dash et al., 

2002) a lack of knowledge about emissivity can introduce a bias ranging from 0.2 to 1.4 K 

during mid-latitude summers, and 0.8 to1.4 in winter conditions. In our study, the bias had a 

slight difference across all seasons: 4.1°C from June 1st - to September 30th, 4.5°C from January 

1st - to May 31st and October 1st - December 31st. As a result, we recommend that future studies 

use additional MODIS products to resolve this issue, such as the MODIS BRDF (Schaaf et al., 

2011; Schaaf et al., 2002; Wang et al., 2012; Lucht et al., 2000; Wanner et al., 1997) coupled 
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with the estimated outputs. This will improve our understanding of the discrepancies between the 

observed LST and Ta for various land cover types.   

Deviation of leaf temperature from air temperature has been attributed to several factors 

including the variation found in convective heat loss (Miller, 1972; Smith, 1978; Helliker and 

Richter, 2008).  It has been reported that the low thermal capacity of plant leaves can lead to a 

difference of up to 15°C between surface and air temperature (Geiger et al., 1995). Other factors, 

including herbicide uptake, pests, and disease can also create differences between surface and air 

temperature (Chaerle et al., 2009). For several subalpine species such as the Abies, Pinus, and 

Picea, leaf temperature is reported to be 5-9°C higher than air temperature (Smith and Carter, 

1988; Helliker and Richter, 2008). The difference between leaf and air temperature in a dense 

mixed forest versus a less dense mixed forest is reportedly 4-5°C and 0.3-2.7°C, respectively 

(Leuzinger and Korner, 2007; Helliker and Richter, 2008).  The canopy temperature is higher 

than the air temperature from the morning hours until the early afternoon in the case of apples 

(Meng et al., 2007), cherries (Buyukcangaz et al., 2007), and grapes (a difference of 9°C) 

(Frühauf and Jagoutz, 2003).  We obtained an average bias of 5.6°C for apples, 4.2°C for 

cherries, 5.2°C for pears, and 3.2°C for grapes. The lower bias for grapes in the Yakima Valley 

can be attributed to the irrigation strategies of the growers which reduces the stress in plants and 

decreases the differnces between canopy temperature and air temperature. However, additional 

information on leaf angle, stomatal opening, and roughness parameters is needed to better 

understand the actual underlying factors creating these discrepancies among the estimated values 

of each type of land cover. 
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Impact of other environmental factors on Ta 

The main factor contributing to the estimation of Ta based on remote sensing data is 

radiation. However, there are also environmental factors involved, including relative humidity 

(RH), wind speed, and proximity to bodies of water. While some of these factors are 

interconnected, the variability in the results can partially be described by the effect of these 

environmental factors. Since water bodies only cover one percent of the Yakima Valley, any 

variability in the estimated Ta and the Ta obtained from NLDAS was not influenced by closeness 

to water bodies.  

However, wind speed and RH definitely contributed to the difference between the 

estimated Ta from MODIS LST and the Ta obtained from NLDAS, as the wind speed for our 

study area during 2010 was, on average, 8.3 km/h, and the relative humidity averaged 57% 

(RAWS, 2015). Although we acknowledge the impact of RH and wind speed on these 

discrepancies, a detailed discussion of this phenomena is beyond the objectives of this paper. 

Previous studies have reported an accuracy of ±1.2°C when RH and wind speed were considered 

in conjunction with remote sensing data (Konda et al., 1996). A separate study reported that the 

wind speed influenced both the canopy and soil temperature by 2°C (Goward et al., 2002). 

  A positive bias was associated with the start of the growing season in April, as well as 

the end of the growing season in October. The primary cause of this positive bias are the low 

values of NDVI present at the beginning and end of the growing season. As a result, Ta estimates 

tend to show greater values compared to the Ta obtained from NLDAS, particularly at the 

beginning and end of the growing season. 

In our study, the highest R2 obtained was for the fallow/idle cropland, whereas the lowest 

R2 was for grapes and spring wheat (Table 3.6.); while the alfalfa had both a high and low R2. 
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The variability in the R2 for the alfalfa can be attributed to the fact that this type of crop is 

heavily managed, and frequent cutting during the growing season leads to this variation in its 

NDVI. In addition, environmental factors such as water and energy fluxes have also proven 

influential in the estimated Ta over the alfalfa, as a result of modification of the green leaf area 

and its corresponding transpiration via agricultural management.  

 

Further comparison of the estimated Ta and the observed Ta 
 

The RMSE for our study area was obtained by comparing the estimated and the observed Ta, 

resulting in a temperature of 7.4°C when averaged across all land covers (Table 3.6.). In our 

study we found the highest RMSE in the urban (medium intensity) land cover, followed by 

shrubland and pasture, while the lowest RMSE was obtained for potatoes (Table 3.6.). Colombi 

et al. (2007) reported an RMSE of 1.9°C for comparison of the MODIS LST and the Ta for the 

alpine areas. An RMSE of 3.6°C was reported when the MODIS LST for pixels with high NDVI 

values was compared to the Ta (Bustos and Meza, 2015). Wloczyk et al.  (2011) estimated the air 

temperature provided by Landsat 7ETM+ data, and reported an average RMSE of 3°C for a 

study area in the north-eastern part of Germany. Prince et al. (1998) used Advanced Very High-

Resolution Radiometer (AVHRR) satellite data to estimate air temperature, and  found an RMSE 

of 3.9°C for a variety of land cover types, including boreal forest (Kansas, U.S.), tropical bush 

savannah (Niger, West-Africa), tall-grass prairie (Saskatchewan and Manitoba, Canada), and 

intensive agriculture production on the mountain prairies (south-central U.S.). However, the 

RMSE for the location with intensive agriculture was 4.8°C, while another study reported an 

RMSE of 2.5°C for a homogenous location covered with annual grasses near Darham, Senegal, 

West Africa, using MSG SEVIRI data to estimate the air temperature (Stisen et al., 2007). The 
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RMSE obtained by our research was higher than that acquired in previous studies; however, we 

did not omit the outliers for the statistical analysis in our study. Further, we used all pixels within 

the study area for our work, whereas previous studies only used the pixels with high NDVI 

values. The highest NDVI value for setting up the relationship between the LST and the Ta also 

varied, depending on the studies and sensors used. Wloczyk et al.  (2011) used a maximum 

NDVI of 0.95; which factor might also contribute to the higher RMSE found in the results of our 

study. Topographic variability within the study area might also be influential on the bias and 

RMSE via changes in wind and solar radiation (Nieto et al., 2011). In addition, bidirectional 

effects that define how lights will be reflected from the canopy should also be taken into account 

in order to obtain more accurate estimates (Nieto et al., 2011).  

The implementation of the methods similar to what we used in this study for a particular 

region should be based on the availability of other sources of spatial Ta data for that region. 

When there is a lack of observed Ta data with a high temporal resolution, the method used in this 

study can be used to estimate Ta or improve the missing observations in a big dataset. However, 

the impact of the land-cover type and other physical processes should be considered when 

estimating Ta. This can be done by selection of a relatively homogenous area with a land-cover 

such as evergreen forest.  

In a region with similar topography and weather as the Yakima Valley, fallow cropland, 

grassland (herbaceous), woody and herbaceous wetland, and maize and potato fields, should 

have the most reliable estimated Ta when this method applied. Future studies that focus on the 

use of remote sensing data for estimating Ta should take in to account the effect of other 

environmental factors such as wind speed, relative humidity, and closeness to water bodies on 

the associated bias between the estimated and observed Ta.   
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Conclusions 
 

A vegetation-temperature index method was applied to estimate the air temperature for 

regions located in Yakima Valley, Washington.  The estimated air temperature can be used for 

applications in many different disciplines. However, since the accuracy of the air temperature 

estimates, on average, was 4.3°C, it is not accurate enough to be used as a substitute for ground 

measurements of air temperature. For future studies, it is recommended that the NDVImax should 

be adjusted to accommodate the diversity in the landcover types and therefore, improve the air 

temperature estimates. The large RMSE score implies that there is a high noise that can be 

attributed to the spatial resolution of the vegetation indices, the uncertainties associated with the 

NLDAS data and inaccuracies of the satellite data. 
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CHAPTER FOUR  

SPATIO-TEMPORAL ANALYSIS OF SEVERAL BIOCLIMATIC INDICES FOR 

VITICULTURAL ZONING 

Abstract 
 

The growth and development of grapevines (Vitis vinifera L.) is highly dependent on the 

weather dynamics of a region. The quality and quantity of the grapes produced is controlled by 

the weather conditions during each growing season as well as the previous season; subsequently, 

a vineyard’s economic profitability is also affected by weather dynamics. In this study, several 

bio-climatic indices were computed using 30 years (1983-2012) of daily weather data obtained 

from the gridded surface meteorological dataset at the University of Idaho (UI GSM). The bio-

climatic indices were extracted for each of the American Viticultural Areas (AVA) located in the 

State of Washington and parts of Oregon. Descriptive statistics were computed for the bio-

climatic indices of each separate AVA, and the statistics were then compared based on their bio-

climatic indices. Several new indices were developed, based on modifications made on previous 

indices and models. The Dynamic Minimum Temperature Index (DyMin. Temp.) was developed 

via a series of modifications made to the previously established Minimum Temperature Index.  

The Cold Damage Index (CDI) was developed based on the Cold Hardiness Model, and a new 

Wind Speed Index (WSI) was also introduced. Puget Sound has many distinct features not 

present in other eastern Washington AVAs: in terms of growing season temperature, Puget 

Sound, Columbia Gorge, and Naches Heights were categorized as cool climate maturity 

groupings, and the remaining AVAs were categorized as intermediate maturity groupings. The 

average for frost free days ranged from 146 to 230; the mean growing degree days (GDD) ranged 

from 948 to 1662; the mean biologically effective degree days (BEDD) ranged from 318 to 
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1590; the mean Huglin Index (HI) ranged from 1452 to 2425; the mean length of growing season 

(LGS) ranged from 164 to 189 days; and the average growing season suitability (GSS) ranged 

from 82% to 92%.  Once obtained, the bio-climatic indices were then used to categorize the 

AVAs; these relative categories have the ability to assess the climate potential of specific AVAs 

for optimal grape production. They can improve our understanding of a region’s climate, 

potentially enabling us to match the best cultivars to a region based on its specific climate 

dynamics.  

Introduction 
 

Climate plays the predominant role in grapevine (Vitis spp.) growth and development (van 

Leeuwen et al., 2004; Santos et al., 2011, Fraga et al., 2013); specific environmental conditions 

determine grapevine physiology and development (Magalhães, 2008; Jackson 2008; Santos et al., 

2012b; Toth and Vegvari, 2016). A strong correlation has been reported between grape yield and 

climate traits, such as monthly mean temperature and precipitation totals during the growing 

season for a specific region (Makra et al., 2009; Santos et al., 2012a). Jones et al. (2004) 

described the impact of climate as the most profound factor in determining the ability of a region 

to produce quality grapes. The macro-climate requirements for vines require that the lowest 

temperature in winter does not fall below -15°C to -20°C, and that there be a minimum of 1000 

growing degree days with a base of 10°C available for the grapes (Van Leeuwen and Seguin, 

2006; Keller, 2010; White, 2015). The meso-climate is mainly determined by the topography of 

a region (Van Leeuwen and Seguin, 2006; Keller, 2010; White, 2015), while the micro-climate is 

primarily decided by local soil and canopy management, and is focused on the fruit zone (Van 

Leeuwen and Seguin, 2006; Keller, 2010; White, 2015).  
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Bio-climatic indices 
 

Several indices have been developed based on the heat load (daily accumulated 

temperatures above a threshold of 10°C for a fixed period) and temperature requirements of 

grapevines. Growing season suitability (GSS) (Malheiro et al., 2010; Santos et al., 2012b) is the 

fraction of days from April to September with daily mean air temperatures above 10°C. The 

length of growing season (LGS) (Jackson, 2008) is the number of days with mean temperatures 

above 10°C for a growing season ranging from April 1st to October 31st. The Cool night Index 

(CI) (Tonietto and Carbonneau, 2004) takes into account the minimum temperature during grape 

maturation, and is the average minimum air temperature in September. 

The Frost Free Days index (FFD) (Magarey et al., 1998) is used to determine growing 

season length; it is the period between the last frost (temperatures below 0°C) in spring and the 

first frost in fall. Temperatures below −17°C are commonly considered the lethal lower 

temperature limit for grapes; defined as the minimum temperature index (Min. Temp.) (Hidalgo, 

2002), it is a vital constraint of growing grapevines. However, cold acclimation is a 

physiological process that happens over a period of time, so using a single temperature threshold 

to represent it may not be effective in capturing grapevine behavior in response to low 

temperatures. In reality, lethal low temperatures are dynamic, and vary based on the cold 

hardiness status of each grapevine. Grapevine cold hardiness is likewise a dynamic phenomenon 

that responds to seasonal changes in air temperature (Ferguson et al., 2011). Cold hardiness starts 

with the acclimation at the end of the growing season (fall), which coincides with a decrease in 

the air temperature. During the winter, when temperatures are low and stable, cold hardiness 

remains steady. De-acclimation begins when the temperature rises at the end of winter/early 

spring (Ferguson et al., 2011). The injuries caused by frost and freezes on grapes are well-
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documented (Fennell, 2004; Goffinet, 2001; Wample et al., 2001; Davenport et al., 2008); 

however, there are differences among cultivars in terms of their cold hardiness (Clark et al., 

1996; Fennell, 2004; Wolfe, 2001; Mills et al., 2006; Davenport, 2008; Ferguson et al., 2011; 

Ferguson et al., 2014). Cultural practices such as crop load except for the regions where the 

plants can not complete their development before the start of frost and plant nutrient status have 

no significant effect on the cold hardiness of grapes (Davenport, 2008). The temperature at 

which 50% of the organ or sample tissue is injured due to freeze is called LT50 (Ferguson et al., 

2011); the prediction of cold hardiness is based primarily on the measured LT50 of the dormant 

buds of multiple grape cultivars (Ferguson et al., 2011).  

The impact of high wind speeds on grapevine growth and yield is well-documented 

(Takahashi et al., 1976; Freeman et al., 1982; Hamilton, 1988; Jackson, 2008; Keller, 2010), but 

no comprehensive index has been developed using wind speed as a supplemental tool for 

viticultural zoning. Previous studies have indicated that strong winds can cause physical damage 

to grapevines (Hamilton, 1988); wind speed impacts evapotranspiration due to its impact on 

stomatal resistance (Dry et al., 1990; Campbell-Clause, 1998; Tarara et al., 2005; Keller, 2010) 

and boundary layer thickness (Keller, 2010). Jackson (2008) discussed the impact of wind 

velocity on the heating of grape berries, canopy water deficiency, irrigation systems, soil erosion, 

disease dispersion, physical damage to vines, shoot length, leaf size, stomatal density, number of 

clusters per vine, ripening, and the solubility of solids. The impact of wind is increased by the 

number of wind perturbations (Keller, 2010; Tarara et al., 2005; Williams et al., 1994); 

Gladstones (1992) reported two types of damage resulting from strong winds: 1) injury caused 

by strong winds in spring and early summer that mainly affects young and tender growth; and 2) 
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injury caused by hot, dry winds in summer that damages the vines, and leads to imperfect 

ripening and the collapse of berries.  

The Winkler index (WI) (Winkler et al., 1974; Jones et al., 2010), more commonly 

recognized as growing degree days (GDD) are the degree day units accumulated during the 

growing season with a base temperature of 10°C. This required heat load (GDD) is a function of 

grapevine variety; therefore, the reported minimum value and optimal range of the GDD can 

vary. In our sudy GDD was computed based on a fixed growing season from April to October in 

order to enable further comparisions with other grape producing regions. The Huglin Index (HI) 

(Huglin, 1978) combines the air temperature during the active period of vegetative growth with a 

coefficient of day length that varies according to the latitude (Appendix A). It provides valuable 

information on the local heat summations by considering the average and maximum 

temperatures and weighting the accumulated temperatures to the daytime period.  Huglin and 

Schneider (1998) classified grape varieties based on HI. Growing Season Temperature (GST) 

(Jones, 2005a) is the average temperature of the growing season from April to October.  

Biologically effective degree days (BEDD or E°) (Gladstones, 1992) account for heat 

accumulations that are defined by upper and lower temperature thresholds (between 10 °C to 19 

°C); BEDD formulation also adjusts the heat accumulation for diurnal range adjustments 

(Appendix A). Gladstones (1992) applied BEDD to define corresponding maturity groupings of 

various grape cultivars (Table 4.1.).  
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Table 4. 1. Wine grape maturity groupings and corresponding BEDD to ripeness (Gladstones, 
1992). 

 Red  White or Rose  
Group 1 
1050 day°  

- Madeline, Madeline-sylvaner 

Group 2 
1100 day° 

Blue Portuguese Chasselas, Muller-Thurgau, 
Siegerrebe, Bacchus, Pinot Gris, 
Muscat Ottonel, Red Veltliner, 

Pinot Noir, Meunier 
Group 3 
1150 day° 

Pinot Noir, Meunier, Gamay, 
Dolcetto, Bastardo, Tinta Carvalha, 

Tinta Amarella 

Traminer, Sylvaner, Scheurebe, 
Elbling, Morio-Muskat, Kerner, 
Green Veltliner, Chardonnay, 
Aligote, Melon, Sauvignon, 

Blanc, Frontignac, Pedro 
ximenes, Verdelho, Sultana 

Group 4 
1200 day° 

Malbec, Durif, Zinfandel, Schiava 
(=Trollinger), Temranillo, Tinta 

Maderia, Pinotage 

Semillon, Muscadelle, Riesling, 
Welschriesling, Furmint, 

Leanyka, Harslevelu, Sercial, 
Malvasia Bianica, Carbernet 

Franc 
Group 5 
1250 day° 

Merlot, Carbernet Franc, Shiraz, 
Cinsaut,  Barbera, Sangiovese, 

Touriga 

Chenin Blanc, Folle Blanche, 
Crouchen, Rousanne, Masanne, 
Viognier, Taminga, Carbernet 

Sauvignon 
Group 6 
1300 day° 

Cabernet sauvignon, Ruby 
Cabernet, Mondeuse, Tannat, 
Kadarka, Corvina, Nebbiolo, 

Ramisco, Alvarelhao, Mourisco 
Tinto, Valdiguie 

Colombard, Palomino, Dona 
Branca, Rabigato, Grenache 

Group 7 
1350 day° 

Aramon, Petit Verdot, Mataro, 
Carignan, Grenache, Freisa, 

Negrara, Grignolino, Souzao, 
Graciano, Monastrell 

Muscat Gordo Blanco, Trebiano, 
Montils 

Group 8  
1400 day° 

Tarrango, Terret Noir Clairette, Grenache Blanc, 
Doradillo, Biancone 

 

The Huglin Index (HI) and biologically effective degree days (BEDD) use a coefficient 

(k) to represent the changes in day length imposed by latitude (Appendix A). The increase in day 

length during the growing season occurs in concurrence with an increase in latitude. A clear 

definition of k is absent; however, Huglin (1978) categorized k based on the latitudes between 

40° and 50° to five classes where k had a range of 1.02 to 1.06. The k for latitudes lower or equal 

to 40° was reported to be 1 (Huglin, 1978; Tonietto and Carbonneau, 2004; KNMI, 2013). Mean 

thermal amplitude (MTA) (Mullins et al., 1992; Ramos et al., 2008) is the difference between the 

minimum and maximum temperature in September, and is associated with grape quality and 
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composition (Montes et al., 2012). However, it should be noted that it should be adjusted based 

on phenology rather than calender.   The latitude temperature index (LTI) (Jackson and Cherry, 

1988) is the result of multiplying the mean temperature of the warmest month by (60 minus the 

latitude).   

The Growing Season Precipitation index (GSP) (Blanco-Ward et al., 2007) provides the 

general suitability used in climate zoning for viticulture that accumulates precipitation during the 

growing season (Appendix A). However, the GSP is only relevant for regions where grapes are 

normally not irrigated. The hydrothermic index (HyI) (Branas, 1974) combines the effect of air 

humidity and temperature using precipitation as a surrogate during the growing season, to assess 

the risk of grapevine exposure to certain diseases such as downy mildew. The Dryness Index 

(DI) (Riou et al., 1994; Tonietto and Carbonneau, 2004) indicates the presence of drought 

conditions and the intensity of a drought. This index takes into account the evaporative demands 

of the vines, bare soil evaporation, and precipitation. The DI also provides an indication of 

potential soil water availability and the level of regional dryness. The determination of DI can be 

challenging due to a lack of proper data on the irrigation and evapotranspiration of a region, as 

well as difficulties in modeling them. Both HyI and DI are measures that capture moisture 

surplus and deficiencies, and both have been used in viticulture zoning studies (Blanco-Ward et 

al., 2007).  

The composite index (CompI) (Malheiro et al., 2010; Santos et al., 2012b) combines the 

HI, DI, minimum temperature, and HyI.  Malheiro et al. (2010) reported the CompI as the ratio 

of years which simultaneously verify that HI ≥ 1400°C, DI ≥ -100 mm, HyI ≤ 5100°Cmm and 

Min. Temp. Always > -17°C. CompI has a range between 0 and 1, and is binomial and 

dimensionless. It depicts the fraction of “optimal years” for growing grapevines in a selected 
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region within a selected timeframe (Malheiro et al., 2010). Santos et al. (2012b) modified this 

index in order to capture the actual distribution of the viticultureal regions in Europe. They 

claimed that the HyI was too restrictive and resulted in unrealistic CompI values for some of the 

more well-established viticultural regions in Europe. Santos et al. (2012b) eliminated HyI from 

the CompI calculations and defined the modified CompI as the ratio of the years which 

simultaneously verify HI ≥ 1200°C, DI ≥ -100 mm and Min. Temp.  > -17°C. In our study, the 

majority of bio-climatic indices discussed in this section were computed for a period of 30 years, 

except the DI (Appendix A). Since CompI requires DI as one of its inputs, this index was not 

computed either.  

Bio-climatic zoning of grape-growing regions 
Climatic zones outside the U.S. 

Several studies have investigated the use of bio-climatic indices to classify potential 

grapevine growing regions. Jackson and Cherry (1988) calculated and compared 14 bio-climatic 

indices for 78 locations in Europe, North America, Australia, and New Zealand to determine the 

most useful index among those proposed for the classification of grape-growing regions. They 

reported LTI and HI to be the best indices for differentiation of grape-growing regions, based on 

the information provided on the heat requirements of different cultivars. Their climate dataset 

was obtained via weather stations; thus, their temporal and spatial resolutions were not optimal. 

Tonietto and Carbonneau (2004) undertook a climatic classification that combined HI, CI, and 

DI, and found that HI and CI are able to describe most of the variability within the climatic zones 

of grape-producing regions around the world. However, they used World Meteorological 

Organization (WMO) stations that were located near each grape-producing region; therefore, 

their weather dataset was based on the point measurements provided by the weather stations and 

did not spatially cover the study area.  Jones et al. (2009) also determined the climatic indices for 
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grape-growing regions worldwide; they used several bio-climatic indices, including HI, CI, DI, 

BEDD, and GST. They Utilized WorldClim (WorldClim, 2009) 1km resolution for the period 

from 1950-2000, and the temporal resolution of the data was obtained monthly. Jones et al. 

(2009) recommended use of climate grids with a finer spatial resolution and recent weather data 

to update bio-climatic indices. With an improved climate structure, the variability and change of 

suitability can be monitored more accurately and efficiently (Jones et al., 2009). Santos et al. 

(2012b) provided a macro-climate and classification analysis for grape-growing regions in 

Europe.  They used the E-OBS gridded daily temperature and precipitation dataset of a period of 

59 years (1950-2009) for the European continent, and calculated the GSS, GSP, Min. Temp., CI, 

WI, HI, DI, HyI, and CompI in order to determine any potential trends in the individual indices. 

They identified significant trends in WI and HI, and using a canonical correlation analysis, 

demonstrated that the observed inter-annual variability of the HI was strongly controlled by 

large-scale atmospheric circulations during the growing season. Santos et al. (2012b) also 

analyzed the inter-annual variability and long-term trends in the bio-climatic indices, and 

updated the bio-climatic indices using high-resolution datasets for Europe.  

 Hall and Jones (2010) calculated GST, GDD, HI, and BEDD for Australian wine grape 

growing regions from 1971-2000 and they found that the knowledge of climate dynamics helps 

to better undrestand the cultivar suitability within each region.  Anderson et al. (2012) used daily 

historical data from weather stations (1971-2000) to calculate bio-climatic indices such as GST, 

WI, HI, and BEDD, and then interpolated the indices to a spatial grid with a 500 m resolution. 

They found that elevation plays an important role in determining the climate suitability of a 

particular region for grape production. They argued that GST and WI functionally capture the 

same information, and that HI is most capable of representing the actual structure of suitable 
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regions for grape production in New Zealand. However, they suggested the need for within-

region assessment of potentially suitable areas in future studies.  Montes et al. (2012) used CI, 

DI, HI, and MTA for a multi-criteria climate classification of seven Chilean viticultural valleys 

represented by 54 different weather stations. They reported that the CI index did not accurately 

represent climate variation in Chile and had a lack of discriminating capacity. Montes et al. 

(2012) found a similar spatial trend for MTA and HI, and concluded that MTA was a suitable 

index for characterizing the thermal regime in Chile. Conceição and Tonietto (2005) evaluated 

the climate potential of three regions in Brazil by calculating the HI, CI, and DI using average 

historical meteorological data obtained from weather stations in those areas.  

Climatic zones in the U.S. 

The most suitable climatic zones for viticulture in California were first classified and 

formulated by Amerine and Winkler (1944) and Winkler et al. (1974). It was later updated for 

the western U.S. by Jones et al. (2010) using the PRISM (Parameter Elevation Relationships on 

Independent Slopes Model) (Daly et al., 2008) for the period from 1971 to 2000, using a spatial 

resolution of 15 arc-seconds (400 m) and a monthly temporal resolution. They calculated four 

bio-climatic indices: GDD, HI, BEDD, and GST; in addition, Jones et al. (2010) emphasized the 

importance of updating the long-term wather data for the calculation of bio-climatic indices and 

recommended further research on this issue. Yau (2011) computed GDD, LTI, and FFD using 

the PRISM monthly dataset for the PNW region. Yau et al. (2013) used principle component 

analysis (PCA) to determine the dominant factors influencing the AVAs in the PNW region, and 

found that the combination of elevation, GDD, FFD and precipitation were the most important. 

One Yau et al. (2013) conclusions was that the climate component of AVAs is the most difficult 
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to obtain and analyze, implying that any research capable of providing an improved climate 

component would enable the advancement of characterization of AVAs in the PNW region.  

The goal of our study was to determine the critical bio-climatic indices for the AVAs 

located in the State of Washington and parts of Oregon, and to evaluate the performance of new 

indices based on the cold hardiness dynamics of grapes, minimum temperature, and wind speed 

thresholds.   

Materials and Methods 
American Viticultural Areas (AVAs) 

Officially recognized appellations that allow vintners and consumers to attribute wine 

characteristics to the specific geographic origin of its grapes are called American Viticultural 

Areas (AVAs) (Yau et al., 2013; TTB, 2015). AVAs are acknowledged by the Alcohol and 

Tobacco Tax and Trade Bureau (TTB), and it is the U.S. Department of the Treasury that allows 

vintners to describe the origin of their wine to consumers (TTB, 2015). AVAs also impact the 

price of the grapes and the wines produced from these grapes for the various appellations (Yau et 

al., 2013).  A total of 14 AVAs have been established in the State of Washington, eastern and 

north-central Oregon (Table 4.2.; Figure 4.1.); the Columbia Valley is the largest, covering an 

area of 4,597,090 ha. Yakima Valley was the first AVA to be federally recognized in 

Washington in 1983 (WSW, 2015). The most recent AVA to be federally recognized was 

Oregon’s Rocks District of Milton-Freewater in 2015, which is enclosed by the Walla Walla 

AVA. 

 

 



104 
 

 

Figure 4.1. Geographic locations of the Washington-Oregon American Viticultural Areas 
(AVAs). 

 

Several of the AVAs are shared among Washington, eastern and north-central Oregon 

(Figure 4.1.). The study area was, therefore, expanded to include parts of Oregon in order to 

calculate the bio-climatic indices for all the shared AVAs. The latitude ranged from 45.25° N to 

49° N and the longitude ranged from 116.8° W to 124.78° W. The total area under grape 

cultivation in Washington was 27,186 ha based on the USDA published statistics for 2012 and it 

is expanding annually (USDA-NASS, 2015).  
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Table 4.2. List of American Viticultural Areas (AVAs) located in the State of Washington 
and/or Oregon and some of their properties. 

AVA State(s) 
Area 
 (ha) 

Elevation (m) AVA  
Recognition 

Year Min. Max. Mean 

Columbia Valley 
Washington-
Oregon 4,597,090 20 1442 451 1984 

Puget Sound Washington 1,179,606 0 1046 109 1995 
Yakima Valley Washington 289,775 128 1099 339 1983 
Horse Heaven Hills Washington 233160 81 671 321 2005 

Walla Walla 
Washington-
Oregon 129059 122 696 315 1984 

Ancient Lakes of the 
Columbia Valley Washington 68607 173 583 377 2012 

Columbia Gorge 
Washington-
Oregon 48431 23 840 377 2004 

Wahluke slope Washington 32631 122 504 251 2005 
Rattle Snake Hills Washington 29934 258 922 434 2006 
Lake Chelan Washington 13291 278 1152 445 2009 
Naches Heights Washington 5315 359 647 543 2012 
Red Mountain Washington 1837 167 429 228 2001 
Snipes Mountain Washington 1585 224 399 280 2009 
The Rocks District 
of Milton-Freewater Oregon 1483 241 307 278 2015 
 

 Weather Data  

We used weather data obtained from the University of Idaho’s Gridded Surface 

Meteorological Data (UI GSM, 2015). The UI GSM (Abatzoglou, 2011) employs the spatial 

attributes of the Parameter-elevation Regression on Independent Slopes Model (PRISM, Daly et 

al., 2008), with temporal attributes of regional-scale reanalysis and daily gauge-based 

precipitation from the North American Land Data Assimilation System Phase 2 (NLDAS-2; 

Mitchell et al., 2004). The dataset has a spatial resolution of 4 km for the contiguous United 

States and a daily temporal resolution. The UI GSM is evaluated by (Abatzoglou, 2011) 

comparing the dataset with the observed data recorded by the weather station networks such as 

RAWS (RAWS, 2011), AgriMet (AgriMet, 2011), AgWeatherNet (AgWeatherNet, 2011) and 

USHCN-2 (USHCN, 2011).  
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The daily minimum and maximum air temperatures of the dataset have a reported median 

error of 1.7°C to 2.3°C,  and the median correlations of the daily maximum and minimum air 

temperatures is reported to be 0.94 – 0.95 and 0.87 – 0.90, respectively (Abatzoglou, 2011). For 

the wind speed, a median correlation of 0.54 and 0.68 was reported during the cold season (Oct-

Apr) and a correlation of 0.52 and 0.62 for the warm season (May-Sept), revealing an 

overestimation ranging from 5% to 30% (Abatzoglou, 2011).Still, the dataset has great potential 

for landscape-scale modeling in areas where there is a limited amount of comprehensive, long-

term, daily historical weather data (Abatzoglou, 2011).  

In our study, the bio-climatic indices were calculated using several variables obtained 

from the UI GSM, which covered a period of 30 years (1983-2012). The variables included 

precipitation, temperature, and wind velocity at 10 m above ground. The initial resolution was 4 

km, and was downscaled to a spatial resolution of 482 m using a bi-linear interpolation algorithm 

(MATLAB 2014a); the indices were developed for the period between 1983 and 2012 

(MATLAB, 2014a). For our study, the day length/latitude coefficient (k) required for obtaining 

HI and BEDD was calculated by applying a linear interpolation to the previously reported k for 

each region (this interpolation modified k based on linear changes in latitude). The k was linearly 

increased from 1.03 to 1.06 by changing the latitude from 44° to 50°. 

The bio-climatic indices for each AVA were extracted using ArcGIS v.10 (ESRI, 2015) 

based on the AVA boundaries.  All the shapefiles, except for the Rocks District of Milton-

Freewater, were obtained courtesy of the Davenport Lab, Washington State University Irrigated 

Agriculture and Research and Extension Center, Prosser, WA, U.S.A. The computed bio-

climatic indices were statistically compared among AVAs to detect significant differences at the 

95% confidence level. The statistical analysis was conducted to compare the mean values using 
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the analysis of variance (ANOVA) test with SAS v.9.4. (SAS, 2015). It should be noted that the 

AVAs differed in area and number of pixels, and were also not independent, as Columbia Valley 

encompasses most of the AVAs located in Eastern Washington (Figure 4.1.). However, use of 

statistical techniques can assist with further categorizing these AVAs and obtain more profound 

insight into how each AVA compares with the others.    

Cold Damage Index (CDI)  

The cold hardiness (  for day i is computed based on the cold hardiness of the 

previous day ( plus the changes in the cold hardiness (  over the course of a single day 

(Equation 4.1.). The cold hardiness was computed for a hypothetical cultivar to ensure that the 

most sensitive cultivars have been taken in to account.  

                                                                               (4.1.) 

The changes in cold hardiness (  were computed as follows:  

                                                                 (4.2.) 

Where ka is the constant for acclimation rate, kd is the constant for de-acclimation rate, clog,a is 

the dimensionless logistic component for acclimation, clog,d is the de-acclimation logistic 

component,    represents the chilling degree days, and     the heating degree days 

(Ferguson et al., 2011; Ferguson et al., 2014). The initial cold hardiness (  was 

modified to -3 °C, which is the reported hardiness of green tissue (Fennell, 2004).   

The Cold Damage Index (CDI) was developed to evaluate the minimum daily 

temperature in a specific location with respect to the predicted LT50 for that location. The index 

utilizes a predicted LT50 to count the number of events that occur when the daily minimum 

temperature falls below the LT50 threshold. Hence, the CDI compares the minimum daily 

temperature with the predicted LT50 for a given day. If the minimum temperature falls below the 
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threshold, it is counted as one event. Consequently, the number of events can be counted for each 

month, and the total number of incidents per year can then be summed up to calculate the annual 

CDI.  Depending on the availability of long-term weather data, CDI can be computed for several 

years.  It is also possible to sum up the CDI for periods of 5, 10, 20, and 30 years, and then 

discuss the probability of the occurrence of critical low temperatures in a region based on the 

results. In fact, CDI could be computed for 30 years, and then used to calculate the CDI for 100 

years.  

 Dynamic Minimum Temperature Index (DyMin.Temp.) 

 The Dynamic Minimum Temperature index (DyMin.Temp.) was created as a 

modification of the Min.Temp. (Appendix A). By comparing the daily minimum temperatures 

with the dynamic low threshold for each month, grapevines’ various levels of sensitivity to low 

temperatures (during both the growing season and winter) can be monitored for each location. 

The DyMin.Temp. compares daily low air temperatures with the assigned threshold for a 

particular month ( ); consequently, it returns the number of events (days) that the temperature 

fell below a certain threshold during a particular month. The total number of incidents occurring 

in a single month ranges from 0 (“no events”) to n = the number of days in a particular month; 

ultimately, leading to determination of the total number of incidents occurring within a specific 

month. Depending on the availability of a given region’s long-term weather data, the total 

number of events recorded for each month must then be averaged for each year of the study.  The 

(DyMin.Temp.) was ultimately obtained by summing up the average number of events that 

occurred within each individual month for a specific12-month period (Equation 4.3.).  

  (4.3.) 
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  where  is the dynamic minimum temperature and  is the average number of 

events in the month denoted by m ( Equation 4.4.). 

                                                                             (4.4.) 

 

Where n is the number of years and  is the number of events occurring within a specified 

year and month, as denoted by y and m, respectively (Equation 4.5.).  

                                         (4.5) 

where eom(y,m)(end of month) returns the number of days in a given month and year, 

represented by m and y,    is the minimum temperature for a specific day,   is the 

temperature threshold for a chosen month (the thresholds were as follows: Jan and Dec= -10 °C; 

Oct, Nov, and Feb = -5  °C, Mar = -3  °C, and Apr-Sept = 0  °C) , and  

is defined as follows (Equation 4.6.): 

                          (4.6.) 

Wind Speed Index (WSI) 

Wind speed index (WSI) was developed to help address the impact of wind speed on 

viticultural zoning. The WSI initially takes into account the 10 m daily average wind velocity 

( y,m,d ); WSI essentially uses the same procedure as described for the Dynamic Minimum 

Temperature, but uses  instead of (Equation 4.7.). 

                                               (4.7.) 

where y,m,d  is the average wind velocity for the specified day,    is the wind velocity 

threshold, and the  is obtained as follows (Equation 4.8.):  
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                                           (4.8.) 

The th used in our study was 4 m/s (Freeman et al., 1982; Hamilton, 1989; Hunter and 

Bonnardot, 2011). Since the daily wind velocities obtained from the UI GSM were based on 10 

m wind speeds, the logarithmic wind profile conversion equation was used to convert the 

threshold to a 2 m wind velocity (Allen et al., 1998).  

Precipitation 

Spatio-temporal analysis of the precipitation used in our study was divided into two 

groups: 1) refers to precipitation during the growing season (Growing Season Precipitation 

(GSP)) (Blanco-Ward et al., 2007); and 2) Out of Growing Season Precipitation (OutGSP).  The 

motivation for dividing precipitation into two different groups was to obtain a better 

understanding of local water availability prior to the start of a new growing season. This 

knowledge can help decision-makers, extension specialists, and growers gain more insight into 

the need for irrigation of grapes in specific regions. For each AVA, the total precipitation was 

calculated and the percentage of precipitation was also obtained. Out of growing season 

precipitation is a particularly useful index as it can potentially indicate the amount of water 

available for filling the soil profile prior to the start of a new growing season.  

Results and Discussion 

 Bio-climatic indices 

Growing Degree Days (GDD) 

The calculated Growing Degree Days (GDD) indicated that Puget Sound had the lowest 

accumulated thermal units (948°C GDD), while Wahluke Slope had the highest GDD (1662°C 

GDD). The multiple comparisons of GDDs among AVAs indicated that there was no significant 

difference in the GDD with a 95% confidence level between Wahluke Slope and The Rocks 
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District of Milton-Freewater. There were also no substantial differences noted between Red 

Mountain and Snipes Mountain, or Horse Heaven Hills and Walla Walla with a 95% confidence 

level (Table 4.3.; Appendix B). The results show that the AVAs used in our study were primarily 

categorized (Jackson, 2008) based on their GDD in the region I (≤1390) and region II (1391-

1670). Jones et al. (2010) also reported that most of the regions in Washington are categorized as 

region I, and the Columbia Valley (Oregon) is categorized as region II (Figure 4.2.). The higher 

the heat unit accumulation in a region, the greater the ability to ripen grapes, especially cultivars 

that mature late in the growing season (Wolfe, 1999). Our results also confirm previous reports 

on New Zealand (Anderson et al., 2012) and the western U.S. (Jones et al., 2010).  

Table 4. 3.Mean GDD calculated for each AVA in this study (1983-2012). 

AVA Mean 
GDD 

Regiona 

Puget Sound 948 I 

Columbia Gorge 1089 I 

Naches Heights 1189 I 

Lake Chelan 1329 I 

Rattle Snake Hills 1386 I 

Columbia Valley 1414 II 

Yakima Valley 1488 II 

Ancient Lakes 1525 II 

Walla Walla 1566 II 

Horse Heaven Hills 1566 II 

Red Mountain 1622 II 

Snipes Mountain 1624 II 

The Rocks District of Milton-Freewater 1649 II 

Wahluke Slope 1662 II 
                                                                     a The classification only pertains to this index.   

 

 

 

 

 



112 
 

 Biologically Effective Degree Days (BEDD) 

Biologically Effective Degree Days (BEDD) were also computed for each AVA. Puget 

Sound had the lowest BEDD (318 °C BEDD), while the highest BEDD was obtained for Snipes 

Mountain (1590°C BEDD) (Table 4.4.; Appendix B). Jones et al. (2010) recommended a 

classification of grape-growing regions based on BEDD, and suggested that if BEDD is below 

1000 then the region is too cold for grapes; however, five AVAs within our study area have 

BEDDs lower than 1000, including: Puget Sound, Lake Chelan, Columbia Gorge, The Rocks 

District of Milton-Freewater, and Ancient Lakes of the Columbia Valley. The rest of the classes 

start at 1000 BEDD, with a range of 200 BEDD for each class (Table 4.4.). Gladstones (1992) 

reported the wine grape maturity groupings and their corresponding BEDD to ripeness for 

making dry or semi-sweet table wines (Table 4.1.). Among our chosen AVAs, only Snipes 

Mountain matches Group 8, for which cultivars such as ‘Tarrango’, ‘Terret Noir’, ‘Clairette’, 

‘Grenache Blanc’, ‘Doradillo’, ‘Biancone’  are recommended (Figure 4.2.; Table 4.4.).  

 Table 4. 4.The average BEDD calculated for several AVAs in Washington and Oregon. 

AVA BEDD Classificationa Maturity Group 
(Gladstones 1992) 

Puget Sound 318 Too cold - 
Lake Chelan 838 Too cold - 
Columbia Gorge 941 Too cold - 
The Rocks District of Milton-Freewater 969 Too cold - 
Ancient Lakes of the Columbia Valley 976 Too cold - 
Columbia Valley 1086 1 Group 1 
Walla Walla 1108 1 Group 2 
Wahluke Slope 1129 1 Group 2 
Horse Heaven Hills 1160 1 Group 3 
Red Mountain 1208 2 Group 4 
Naches Heights 1221 2 Group 4 
Rattle Snake Hills 1286 2 Group5 
Yakima Valley 1339 2 Group 6 
Snipes Mountain 1590 3 Group 8 

                                a The classification only pertains to this index ( based on Jones et al., 2010)   
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Huglin Index (HI) 

The calculated Huglin Index (HI) calculated for our study indicated that, among the 

chosen AVAs, Puget Sound has the lowest HI (1452) and Snipes Mountain the highest HI (2425) 

(Table 4.5.). The different values of HI found indicate that there is a significant difference at the 

95% confidence interval for some AVAs; however, no such differences were observed for the 

following pairs: Ancient Lakes of the Columbia Valley and Yakima Valley, Horse Heaven Hills 

and Walla Walla, Columbia Valley and Rattle Snake Hills (Appendix A). We next categorized 

the AVAs based on their HI (Jones et al., 2010) (Table 4.5.), the accepted classification stating 

that HI values below 1200 are too cold for grapes. The classes start at 1200, each comprising 300 

units. The first class of HI (1200-1500) is termed “very cool” the second is “cool” (1500-1800), 

the third is “temperate” (1800-2100), the fourth is “warm temperate” (2100-2400), and the fifth 

is “warm” (2400-2700). Our results indicated that the majority of AVAs in the study area are 

located in a “warm temperate” region (class 4), based on their HI (Figure 4.2.).  

Table 4. 5. The calculated HI for AVAs in Washington and Oregon. 

AVA HI Classificationa 

Puget Sound 1452 Very cool 

Columbia Gorge 1740 Cool 

Naches Heights 1931 Temperate 

Lake Chelan 2019 Temperate 

Columbia Valley 2124 Warm temperate 

Rattle Snake Hills 2138 Warm temperate 

Yakima Valley 2248 Warm temperate 

Ancient Lakes of the Columbia Valley 2248 Warm temperate 

Walla Walla 2274 Warm temperate 

Horse Heaven Hills 2289 Warm temperate 

The Rocks District of Milton-Freewater 2332 Warm temperate 

Red Mountain 2362 Warm temperate 

Wahluke Slope 2397 Warm temperate 

Snipes Mountain 2425 Warm 
                                                  a The classification only pertains to this index.                             
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Growing Season Temperature (GST) 

The GST for all the AVAs was greater than 13.7°C: Puget Sound had the lowest GST 

(13.7°C) and the Rocks District of Milton-Freewater had the highest GST (16.9°C) (Table 4.6.; 

Appendix B). Comparison of the mean GST for each AVA revealed that there is a substantial 

difference in GST among the AVAs, except for Red Mountain and Snipes Mountain, the Rocks 

District of Milton-Freewater, and Wahluke Slope, which have only slight differences at the 95% 

confidence level.   

Table 4.6. Mean GST calculated for each AVA from 1983-2012, and some examples of the 
possible grape cultivar matches for each climate maturity grouping. 

AVA Mean GST 
Climate Maturity 

grouping 

Example of 
recommended 

 grape cultivars 

Puget Sound 13.7 Cool(1) Riesling, Muller-
Thurgau, Pinot Gris, 

Gewurztraminer, Pinot 
Noir, Chardonnay, 
Sauvignon Blanc 

Columbia Gorge 14.0 Cool (1) 

Naches Heights 14.4 Cool (1) 

Lake Chelan 15.1 Intermediate(2) 

Riesling,Pinot Gris,  
Gewurztraminer, Pinot 

Noir, 
Chardonnay,Sauvignon 

Blanc,Semillon, Cabernet 
Franc, Tempranillo, 

Merlot, Malbec,Syrah, 
Viognier, Dolcetto,  
Cabernet Sauvignon 

Rattle Snake Hills 15.5 Intermediate (2) 

Columbia Valley 15.6 Intermediate (2) 

Yakima Valley 16.0 Intermediate (2) 

Ancient Lakes of the Columbia Valley 16.2 Intermediate (2) 

Horse Heaven Hills 16.4 Intermediate (2) 

Walla Walla 16.5 Intermediate (2) 

Red Mountain 16.7 Intermediate (2) 

Snipes Mountain 16.7 Intermediate (2) 

Wahluke Slope 16.9 Intermediate (2) 

The Rocks District of Milton-Freewater 16.9 Intermediate (2) 

 

Additional classifications have been made based on the average GST as a means of 

determining grape maturity groupings and cultivars (Jones, 2007; Jones et al., 2010; Yau, 2011). 

These groupings begin to form average GSTs at 13°C and end at 24°C. There are four major 

maturity groups within this range: 1) the cool climate maturity group ranges from 13°C to 15°C; 

2) the intermediate climate maturity group ranges from 15°C to 17°C; 3) the warm climate 
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maturity group ranges from 17°C to 19°C; and 4) the hot climate maturity group ranges from 

19°C to 24°C.  Based on the GST calculated for each AVA in our study, they can be categorized 

as belonging in either climate maturity group one or climate maturity group two (Figure 4.2.; 

Table 4.6.). There are also several cultivars associated with these climate maturity groupings 

(Jones, 2007; Yau, 2011); use of the GST can help us to better distinguish the climate maturity 

groupings for AVAs, therefore enabling us to provide better cultivar recommendations for each 

specific climate maturity grouping (Figure 4.2.; Table 4.6.).  

 Latitude Temperature Index (LTI) 

The Latitude Temperature Index (LTI) was computed for all the AVAs, and it was 

determined that Puget Sound had the lowest LTI (223.2) and the Rocks District of Milton-

Freewater had the highest LTI (336.9) (Table 4.7.). Interestingly, because this index takes into 

account the latitude of each location, the LTI was significantly different (Figure 4.2.; Appendix 

B) for all of the AVAs except for Walla Walla and Horse Heaven Hills, due to the fact that they 

are located within nearly the same latitude range (45.6° N to 46.2° N). 
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Table 4.7. Calculated LTI for a period of 30 years for AVAs in Washington and parts of Oregon. 
Grouping based on AVA LTIs was also conducted, based on the grouping recommendations 
from Jackson and Cherry (1988). 

AVA LTI LTI 
group 

Example of cultivars 

Puget Sound 223.2 B Riesling, Pinot Noir and 
Chardonnay Lake Chelan 269.3 B 

Naches Heights 281.3 C 

Cabernet Sauvignon, Cabernet 
Franc, Merlot, Malbec, Sauvignon 

Blanc, and Semillion 

Columbia Gorge 285.3 C 
Ancient Lakes 299.3 C 
Rattle Snake Hills 301.8 C 
Columbia Valley 304.4 C 
Yakima Valley 312.0 C 
Wahluke Slope 319.4 C 
Snipes Mountain 322.3 C 
Red Mountain 324.8 C 
Horse Heaven Hills 328.3 C 
Walla Walla 328.6 C 
The Rocks District of Milton-Freewater 336.9 C 

                  a LTI grouping does not correspond to groupings in other indices.  

Yau (2011) also calculated the LTI for AVAs in our study area, and a comparison 

between the two sets of results shows that the AVA rankings were nearly the same for both 

studies. Although the LTIs calculated for our study were generally slightly higher than those 

reported by Yau (2011). Jackson and Cherry (1988) reported an LTI grouping based on the 

cultivars grown in each group; the four main groups are as follows: 1) group A with LTI < 196; 

2) group B with an LTI ranging from 200 to 275; 3) group C with an LTI ranging from 275 to 

370; and 4) group D with an LTI> 370. The results of our study have indicated that the majority 

of AVAs in Washington and Oregon are within group C, except for Puget Sound and Lake 

Chelan (Table 4.7.). Jackson and Cherry (1988) reported the favored cultivars for group B to be 

‘Riesling’, ‘Pinot Noir’, and ‘Chardonnay’, and the favored cultivars for group C were reported 

to be ‘Cabernet Sauvignon’, ‘Cabernet Franc’, ‘Merlot’, ‘Malbec’, ‘Sauvignon Blanc’, and 
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‘Semillion’. This classification can thus be used as a tool for assisting in the selection of cultivars 

based on their LTI groupings.   

  

  

 

 

Figure 4.2. Key bio-climatic indices primarily dealing with thermal heat unit accumulation for 
AVAs located in the State of Washington and parts of Oregon. Class limits in legends are not 
directly comparable. Biologically Effective Growing Degree Days (a); Growing Degree Days 
(b); Huglin Index(c); Latitude Temperature Index (d); Growing Season Temperature (e). 

a b 

c d 

e 
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 Frost Free Days (FFD) 

The calculation of Frost Free Days (FFD) for each AVA revealed that Naches Heights 

had the lowest number of FFD (146 days) and Puget Sound had the highest number of FFD (230 

days). Red Mountain and Wahluke Slope did not show a significant difference in FFD at the 

95% confidence level (Appendix B), implying that the average length of growing season in these 

regions is similar. This information can help decision-makers select cultivars that will complete 

their growing cycles prior to the first freeze in fall, and start their activity after the last frost in 

the spring for each specific AVA.  

Previous studies have indicated that a region requires a minimum FFD of 180 days to be 

considered optimal for grape production (Becker, 1985; Prescott, 1965; Rosenberg et al., 1983; 

Jackson and Cherry, 1988; Yau et al., 2013). Among our selected AVAs, Wahluke Slope, Walla 

Walla, the Rocks District of Milton-Freewater, and Puget Sound all had FFD ≥ 180 days. 

Knowledge of the ranking of AVAs based on their FFD is important for the assignment of early 

or late cultivars in these regions. The remaining AVAs with an FFD < 180 days have already 

been established, and they are still able to produce marketable grapes; however, this may be due 

in part to amendments such as wind machines. Still, the reported optimal growing season length 

for regions with a proven record of sustainable grape production should be updated based on the 

risks that the growers are willing to take in a region that has a higher risk of damage due to low 

temperature (Figure 4.3.). 

 Growing Season Suitability (GSS) 

Growing Season Suitability (GSS) was also calculated for the AVAs in our study: 

Columbia Gorge had the lowest GSS (0.82) and the Rocks District of Milton-Freewater had the 

highest GSS (0.92) (Figure 4.3.). All the AVAs had a GSS higher than 0.8 (Table 4.8.), 
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indicating that for 80% of the period from April to September, the air temperature is higher than 

10°C. Santos et al. (2012b) reported that, because temperatures above 10°C are required for 

grape growth and development, a GSS higher than 90% is required for a region to be considered 

best suited for grape production by satisfying the heat requirement of the plants. Although, the 

calculated GSS for half of the AVAs in our study was lower than 90%; still, because they have a 

GSS ranging from 80% to 90%, they are suitable for viticulture. However, they are best suited 

for areas in the higher latitudes, at slightly greater elevations, with growing seasons of fewer than 

180 days, where the risk of frost is higher, and that show a manifest in their climate variability 

(Santos et al., 2012b; Malheiro et al., 2012). Regions with lower GSS (Table 4.8.) are similar to 

viticultural regions in Western Europe such as Burgundy, Champagne, and the Mosel and Rhine 

Valleys of Germany (Santos et al., 2012b; Malheiro et al., 2012).  

 Table 4. 8. The range of GSS calculated and averaged over a period of 30 years (1983-2012). 

AVA GSS Preference based on GSSa 

Columbia Gorge 0.82 Suitable 

Naches Heights 0.83 Suitable 

Lake Chelan 0.86 Suitable 

Puget Sound 0.86 Suitable 

Rattle Snake Hills 0.87 Suitable 

Columbia Valley 0.87 Suitable 

Yakima Valley 0.89 Suitable 

Ancient Lakes of the Columbia Valley 0.90 Most suitable 

Horse Heaven Hills 0.90 Most suitable 

Walla Walla 0.91 Most suitable 

Wahluke Slope 0.91 Most suitable 

Snipes Mountain 0.92 Most suitable 

Red Mountain 0.92 Most suitable 

The Rocks District of Milton-Freewater 0.92 Most suitable 

         a The classification only pertains to this index.                             
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 Length of Growing Season (LGS) 

The calculated length of growing season (LGS) had a range of 164-189 days. Naches 

Heights had the lowest LGS (164 days) and the Rocks District of Milton-Freewater had the 

highest LGS (189 days). Warmer regions located at lower elevations tend to have a higher LGS 

compared with colder regions at higher elevations (Figure 4.3.). However, since this index is 

essentially implying similar concepts to those of FFD, it might be better to evaluate AVAs by 

checking both indices simultaneously. By comparing the LGS and FFD for all the AVAs, it was 

determined that some had similar LGS and FFD (Table 4.9.), while others presented substantial 

differences. Two main conditions arise as a result: 1) FFD > LGS: in this case, the risk of frost is 

low and there is a long period between the last frost in spring and the first frost in fall. However, 

if the selected cultivars in regions with these types of conditions do not complete their growth 

and development cycle within the LGS, they cannot be guaranteed to mature properly and be of 

optimal quality. 2)  FFD < LGS: in this case (the dominant case for the majority of AVAs in our 

study) (Table 4.9.), the risk of frost during the growing season is higher; because of this, it is 

better to adjust the LGS based on the FFD. In other words, in the case of condition two, the LGS 

should be adjusted in order to be equal to the FFD. 
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Table 4. 9. Calculated Length of Growing Season (LGS) for all the AVAs and their 
corresponding FFD. We recommend use of an adjusted LGS to compare the LGS and FFD, and 
report the index with a lower value 

AVA LGS FFD FFD < LGS adjusted LGS 
Naches Heights 164 146 Yes report FFD 146 
Columbia Gorge 165 164 Yes report FFD 164 
Lake Chelan 169 166 Yes report FFD 166 
Rattle Snake Hills 174 157 Yes report FFD 157 
Columbia Valley 175 168 Yes report FFD 168 
Puget Sound 176 230 No report LGS 176 
Ancient Lakes of the Columbia Valley 179 171 Yes report FFD 171 
Yakima Valley 179 164 Yes report FFD 164 
Horse Heaven Hills 183 178 Yes report FFD 178 
Walla Walla 184 189 No report LGS 184 
Wahluke Slope 185 180 Yes report FFD 180 
Snipes Mountain 186 166 Yes report FFD 166 
Red Mountain 186 179 Yes report FFD 179 
The Rocks District of Milton-Freewater 189 203 No report LGS 189 

 

All of the AVAs in our study match condition two, except for Puget Sound, Walla Walla, 

and the Rocks District of Milton-Freewater (Figure 4.3.).  In regions with shorter growing 

seasons, grapes may be unable to complete their full growth cycles, and the chilling period may 

prove insufficient in Puget Sound AVA. This index can be integrated with other indices to more 

accurately match specific cultivars with regions that have shorter growing seasons; thereby 

providing useful information to assist decision-makers in cultivar selection.   
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Figure 4. 3. Key bio-climatic indices focusing on the length of growing season for AVAs 
located in the state Washington and parts of Oregon. Class limits are not directly comparable. 
Frost Free Days (a); Length of Growing Season (b); Growing Season Suitability (c). 

Cool Night Index (CI) 

Our calculation of the cool night index (CI) indicated that Naches Heights had the lowest 

average CI (6.8°C) and the Rocks District of Milton-Freewater had the highest average CI 

(10.2°C). Comparison of the CI among all the AVAs revealed a significant difference among 

most of the AVAs at a 95% confidence level, except for the following AVA pairs: Ancient Lakes 

and Puget Sound, Horse Heaven Hills and Red Mountain, Columbia Valley and Snipes 

Mountain, and Yakima Valley and Lake Chelan (Appendix B; Figure 4.4.). Knowledge of 

regions with similar CIs can aid growers and decision-makers in the more accurate allocation of 

cultivars to specific regions, thus improving the quality of their produce. Based on the CI 

a b 

c 
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classifications discussed by Tonietto and Carbonneau (2004), all the AVAs in our study are 

categorized as CI+2 regions with a CI≤ 12°C. This category of viticultural climate is reported 

(Tonietto and Carbonneau, 2004) to have great potential for producing quality grapes when 

thermal heat units in the region are adequate. Lower CIs enforces lower rates of metabolism for 

aromatic materials and pigments during the night. 

 Mean Thermal Amplitude (MTA) 

Mean Thermal Amplitude (MTA) calculations indicated that Puget Sound has the lowest 

MTA (11.4 °C) among all the AVAs and Snipes Mountain had the highest MTA (18.1 °C). 

Multiple comparisons of the MTA among the AVAs indicated that there is no significant 

difference in the MTAs of Columbia Gorge, Colombia Valley, Red Mountain, and Wahluke 

Slope at a 95% confidence level (Appendix B; Figure 4.4.). Ancient Lakes of the Columbia 

Valley, Horse Heaven Hills, and Walla Walla had no significant difference at 95% confidence 

level. Lake Chelan and The Rocks district of Milton-Freewater also had no significant difference 

at 95% confidence level. This index is reported to influence the quality of grapes, including 

grape composition, flavor, and aroma (Mullins et al., 1992; Ramos et al., 2008; Montes et al., 

2012). Therefore, similar AVAs (based on their MTA), if managed by the same management and 

irrigation strategies, can potentially produce grapes with many similar qualitative traits. 

However, further assessments is required to evaluate fruit quality traits in AVAs with 

comparable bio-climatic ranges.  
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Dynamic Minimum Temperature (DyMin. Temp.) 

The number of events that the minimum air temperature drops below a dynamic low 

temperature threshold were calculated for all the AVAs for a period of 30 years. Puget Sound 

was determined to have the lowest number of events (3) (Appendix B), with the highest number 

obtained for Naches Heights (45) (Figure 4.4.). Multiple comparisons of the DyMin. Temp. 

revealed significant differences between the AVAs (Appendix B), except in the case of the 

Ancient Lakes of the Columbia Valley and Rattlesnake Hills and Red Mountain and Columbia 

Gorge. The degree of damage caused by low temperatures depends on where individual plants 

are in their physiological and phenological stages (proving that temporal analysis of this index is 

as important as its spatial analysis.). In both the Naches Heights and Puget Sound AVAs, the 

temporal distribution of events was focused in the month of April, with no incidents occurring 

during the summer months (June, July, and August). The concentration of most of the events in 

April might be partiallydue to the assumptions made for the calculation of the index. 

Our study is the first of its type to consider a dynamic minimum temperature rather than a 

fixed minimum temperature. Although this index is not sufficient to fully categorize grape-

growing regions, it can be used in conjunction with other indices to better explore climate 

variability in viticultural regions. Future studies should evaluate the risks associated with 

viticulture in regions that suffer from frequent freezes, and evaluate each region based on its 

resilience, adaptability, and technological advancement.  
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Figure 4. 4. Key bio-climatic indices used in calculation of minimum temperature for AVAs the 
AVAs located in the state of Washington and parts of Oregon. Class limits not directly 
comparable. Cool Night Index (a); Mean Thermal Amplitude (b); Dynamic Minimum 
Temperature(c). 

Cold Damage Index (CDI)  

Total number of events when the minimum temperature drops below a threshold (Bud 

LT50) was calculated and the number were reported for 5, 10, 20, and 30 years and projected for 

100 years (Table 4.10.). Puget Sound proved to have the lowest number of events (zero within 

five years and one for up to 30 years), while the highest number of events was found for Naches 

Heights (30, 47, 86, and 119 events for five, 10, 20, and 30 years, respectively) (Figure 4.5.). Our 

comparison of the CDI results indicated that there was a significant difference between the Puget 

Sound results versus those obtained for the remaining AVAs (Appendix B).  

a b 

c 
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Table 4. 10. Number of incidents for each AVA that the minimum air temperature drops below a 
cold hardiness threshold (calculated for 5, 10, 20, and 30 years). The number of events for a 
century was calculated based on CDI for 30 years. 

AVA CDI 
5 years 

CDI 
10 years 

CDI 
20 years 

CDI 
30 years 

Century  
CDI 

Puget Sound 0 1 1 1 5 
Red Mountain 4 5 13 15 49 
The Rocks District of Milton-Freewater 5 5 5 22 74 
Wahluke Slope 6 7 13 18 59 
Walla Walla 7 9 47 16 52 
Snipes Mountain 7 12 25 33 112 
Horse Heaven Hills 9 12 20 23 78 
Yakima Valley 11 17 33 46 155 
Ancient Lakes of the Columbia Valley 11 13 23 30 99 
Lake Chelan 13 16 30 38 126 
Columbia Gorge 13 23 43 56 187 
Columbia Valley 14 20 36 48 161 
Rattle Snake Hills 15 23 13 72 239 
Naches Heights 30 47 86 119 397 

 

The risk associated with CDI events in a given location depends on various factors, such 

as the duration of a cold spell, economic profitability of the vineyard, availability of affordable 

technologies, and the adaptation of the grower to the risks associated with potential crop loss. 

Discussing the limiting ranges of CDI events is beyond the scope of this paper and needs further 

investigation; hence, the results presented here should be used as a stepping-stone for future 

studies; this index can be an effective tool for the determination of regions with higher numbers 

of CDI events.  
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Figure 4. 5. Cold Damage Index for AVAs located in the state of Washington and parts of 
Oregon. Cold Damage Index for 5 years (a); Cold Damage Index for 10 years (b); Cold Damage 
Index for 20 years (c); Cold Damage Index  for 30 years(d). 

Precipitation 

Our results indicated that, for the majority of AVAs, most precipitation falls during 

winter and early spring (~ 60%), except in the Columbia Gorge (~40%).  This information can 

prove beneficial to decision-makers and growers in determining their options for supplemental 

irrigation.  Gladstones (1992) reported an average GSP of 53 mm and 70 mm for Fresno and San 

Jose, California. When the calculated GSP for the AVAs in this current study was compared with 

the reported GSP values from Gladstones (1992), it was indicated that Snipes Mountain, 

Rattlesnake Hills, Wahluke Slope, Ancient Lakes, Red Mountain, Yakima Valley, and Horse 

a b 

c d 
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Heaven Hills are within the same range of GSP reported for these locations in California.  

However, the out of growing season precipitation (OutGSP) for these AVAs is lower than the 

values reported for Fresno (178 mm) and San Jose (300mm).  

It is important to evaluate the potential of a region based on both the GSP and OutGSP in 

order to better understand the options for dryland viticulture versus irrigated viticulture. 

Furthermore, the amount of precipitation that finally reaches a grapevine’s root zone is generally 

lower than the recorded precipitation, due to the partial interception of raindrops by the canopy 

and vineyard cover crops as well as evaporation at the surface. Therefore, the actual available 

water to the plants is even lower than the calculated values based only on precipitation; hence, 

when assessing the precipitation of various AVAs, two questions must first be answered: a) does 

the region needs supplementary irrigation? b) If the region does require supplementary irrigation, 

does the land have access to water and rights to use it?  

Growing Season Precipitation (GSP) 

Growing Season Precipitation (GSP) was computed for all the AVAs, proving that Snipes 

Mountain had the lowest GSP (52 mm) and Puget Sound had the highest GSP (332 mm). While 

the Puget Sound GSP showed a notable difference when compared with the other AVAs 

(Appendix B), Columbia Gorge and Walla Walla’s GSPs also showed significant difference 

compared with the other AVAs at the 95% confidence level (Figure 4.6.; Appendix B). This 

index provides an accurate means of determining the general economic suitability of a region for 

viticulture (Santos et al., 2012b), especially in locations where irrigation is not an option. If a 

region has a GSP < 200 mm it is regarded as extremely dry, and if it has a GSP > 600 mm, it is 

regarded as excessively humid. All AVAs that were assessed in our study had a GSP lower than 

200 mm, except for Columbia Gorge and Puget Sound (Figure 4.6.).  
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 Out of Growing Season Precipitation (OutGSP) 

Out of Growing Season Precipitation (OutGSP) provides further insight into the available 

water in a specific soil profile prior to the start of the growing season. Our results indicated that 

Wahluke Slope had the lowest OutGSP (73 mm) and Puget Sound had the highest OutGSP (415 

mm) (Figure 4.6.; Table 4.11.). Statistical comparison of AVAs based on their OutGSP indicated 

a significant difference at a 95% confidence level (Appendix B). Preference is generally given to 

regions that receive the majority of their precipitation during winter, thus providing the plants in 

these regions with sufficient water already in the soil profile prior to the start of their growth in 

spring (Jackson, 2008).  

Table 4. 11. Growing Season Precipitation (GSP) and Out of Growing Season Precipitation 
(OutGSP), and total precipitation for the AVAs and their respective percentage out of total 
precipitation. 

AVA GSP 
(mm) 

OutGSP 
(mm) 

Total 
precipitation 

(mm) 

GSP % OutGSP % 

Snipes Mountain 52 78 130 40 60 
Rattle Snake Hills 57 90 147 39 61 
Wahluke Slope 58 73 132 44 56 
Ancient Lakes of the Columbia Valley 59 78 137 43 57 
Red Mountain 61 86 147 41 59 
Yakima Valley 63 87 150 42 58 
Horse Heaven Hills 65 96 160 40 60 
Columbia Valley 81 120 201 40 60 
Lake Chelan 83 108 191 44 56 
Naches Heights 96 112 208 46 54 
The Rocks District of Milton-Freewater 98 185 283 35 65 
Walla Walla 112 197 309 36 64 
Columbia Gorge 262 195 457 57 43 
Puget Sound 332 415 747 44 56 
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Hydrothermic Index (HyI)  

Among all the AVAs Wahluke Slope had the lowest HyI (833.9) and Puget Sound had 

the highest HyI (3144.6) (Appendix B). The multiple comparison indicated that Puget Sound and 

Columbia Gorge had a significant difference when compared to all the other AVAs and between 

themselves. HyI indicates the potential risk of downy mildew (Santos et al., 2012b) in a region as 

well as the water availability (Fraga et al., 2014) downy mildew is not a source of concern in 

Washington since the pathogen does not exist in this state. 

  

 

 

Figure 4. 6. Key bio-climatic indices focused on the precipitation of AVAs located in the state of 
Washington and parts of Oregon. Class limits are not directly comparable for Hydrothermic 
Index. Growing Season Precipitation (a); Out of Growing Season Precipitation (b); 
Hydrothermic Index (c).  

 

a 
b 

c 
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 Wind Speed Index (WSI) 

The Wind Speed Index (WSI) was calculated for the AVAs located in our study area, 

with Red Mountain proving the least windy AVA (16 incidents) and Snipes Mountain the most 

windy AVA (56 incidents) (Appendix B). Our comparison of the WSI indicated that both Red 

Mountain and Snipes Mountain had significant differences at the 95% confidence level 

compared to the other AVAs.  Wind speed is influenced by the complexity of topographic 

elements in a region as well as the variability in the thermal properties of different land cover 

types, leading to thermal gradient. This index cannot be used as a standalone tool for climate 

zoning; however, it can serve as a surrogate to help growers and decision-makers gain valuable 

knowledge about a site. In addition, it can help them make more effective decisions regarding 

management strategies such as installing a windbreak. Future studies can use this index to focus 

on locations that have higher WSI scores and conduct more detailed studies on the impact of 

wind speed on vines (physical damage, shoot growth, and photosynthesis disruption).   

 Meso-climate and Terrain Features 

The similarities and differences between the AVAs based on their bio-climatic indices 

can be described by the factors that impact the meso-climate; specifically, the topographic 

features and complexity of the terrain in a region, including the elevation, slope, and aspect of 

the sites. The effect of elevation on minimum temperature was clearly captured for Naches 

Heights, as this AVA has the highest elevation of them all (543 m), and the lowest CI, lowest 

FFD, highest CDI, and highest Dy.Min.Temp were also reported for this AVA. Puget Sound had 

the lowest elevation among all the AVAs, as well as the highest CI, highest FFD, lowest CDI, 

and lowest Dy.Min.Temp.  
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Weather parameters such as relative humidity also indirectly impact the behavior of bio-

climatic indices. Hence, for an index such as HyI, the value increases in wet regions such as 

Puget Sound, where the relative humidity is much higher compared to other regions located to 

the east of the Cascade Mountains. Consequently, future studies should relate the impact of 

relative humidity on the overall dynamics of bio-climatic indices on a local scale within each 

AVA. There is also a need for development of a management framework based on the current 

cultural practices that are implemented in AVAs with similar climate groupings.    

Conclusions 
 

This study categorized the AVAs located in the state of Washington and parts of Oregon 

based on the dynamics of bio-climatic indices evaluated for a 30-year period. Several new bio-

climatic indices were introduced, including CDI, Dy.Min. Temp., and WSI. Future studies 

should focus on the development and improvement of bio-climatic indices based on recent 

advancements in sensor technology and the availability of finer resolution spatial and temporal 

data.  
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CHAPTER FIVE  

SPATIAL SUITABILITY ASSESSMENT FOR SITE SELECTION OF VINEYARDS 

BASED ON FUZZY LOGIC 

Abstract 
 

Developing a sustainable agricultural production system that uses the full potential of 

land resources requires knowledge of the climate, soil, and topography of the area of interest.  

There is a great potential for wine grape (Vitis vinefera L.) production in the Pacific Northwest 

region of the U.S.; however, few studies have focused on the development of a comprehensive 

spatial suitability system. The main objective of our study was the development of a spatial 

suitability system to aid in the selection of suitable areas for grapevine cultivation. Several bio-

climatic indices, such as Growing Degree Days (GDD), Frost Free Days (FFD), and the Huglin 

Index (HI) were calculated over a period of 30 years using daily weather data obtained from the 

University of Idaho’s Gridded Surface Meteorological Dataset (UI GSM). The soil data was 

obtained from the gSSURGO dataset, and key properties such as soil depth, pH, and soil texture 

were extracted for the study area. The topographical data were obtained from the national 

elevation dataset. The data were then transformed using fuzzy logic, and soil, weather, and 

topographic suitability maps were subsequently developed. The final vineyard potential scores 

were obtained by combining the soil, weather, and topographic potential scores. The potential 

scores had a range from 0 to 1, where 0 pertained to non-suitable areas and 1 referred to optimal 

sites. The vineyard potential scores for vineyards currently established in the state of Washington 

were then evaluated, and the percent area in each vineyard potential class reported. Our spatial 

land assessment system was able to classify the study area into five main regions, based on their 
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vineyard potential. The evaluation results indicated that 97.3 % of the vineyards currently 

established in the study area have vineyard potential scores ranging from 0.80001 to 1, and the 

rest had potential scores of 0.60001 to 0.8. The results of our study can help decision-makers, 

growers, and others with conducting more precise land assessments for winegrape production.     

Introduction 
 

Many factors can directly or indirectly impact the growth and development of plants. Terrain 

attributes, soil properties, and the climate of a specific region are all regarded as permanent 

spatial factors (Spomer and Piest, 1982; Stone et al., 1985; Jones et al., 1989; Kravchenko and 

Bullock, 2000; McKinion et al., 2010b), while insects and other pests, diseases, and management 

practices are regarded as transient spatial factors (McKinion et al., 2010a, 2010b). The 

interaction of an ecosystem that includes climate, soil, and the genetics of grapevines (Vitis spp.) 

is the foundation for viticultural regions (Seguin, 1984), and the environmental factors involved 

in grapevine production are primarily soil and climate (Jones et al., 2004; van Leeuwen and 

Seguin, 2006; MacQueen and Meinert, 2006; Gladstones, 2011; Dougherty, 2012). However, the 

socioeconomic and historical aspects of a region also have the potential to contribute to the 

complex concept of viticultural regions (Deloire et al., 2008).   

Weather is regarded as the most important factor in agricultural enterprises. Annual and 

seasonal weather and its variability determine crop suitability, productivity, and quality. High-

quality, economically-sustainable crop production across the globe is a function of local climate 

and weather conditions (Rosenzweig and Hillel, 2008; Jones et al., 2010; Anderson et al., 2012). 

For grapevines, both yield and quality are impacted by local weather conditions (van Leeuwen et 

al., 2004; Santos et al., 2011; Santos et al., 2012b).  Several soil characteristics are also important 

for establishment of a vineyard. Grapevines tolerates a wide range of soil conditions, but the two 
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main areas of importance are moisture management and nutrient availability (Jones et al., 2004). 

Soil drainage (Jones et al., 2004; Gladstones, 1992) and the distance to any restrictive layer also 

impact grapevines performance. Unrestricted soil drainage to a depth of >2 to 3 m is 

recommended for most vineyards (Gladstones, 1992; Jackson, 2008). Ideal soil for a vineyard 

should be able to maintain plant available water even without constant irrigation (Gladstones, 

1992; Malheiro et al., 2010). Soil pH enables grapevines access to certain micro- and macro-

nutrients (Jones et al., 2004; Jackson, 2008). Grapevines benefit from an optimal soil pH ranging 

from 6.5-7.2 that ensures ion solubility (White, 2009; Dry and Coombe, 2004; Meinert and 

Curtin, 2005). Soil texture controls root growth, root respiration and oxygen availability to the 

roots, as well as soil water availability (Lanyon et al., 2004; Quezada et al., 2014). 

 The topography of a region is also an important factor, particularly the slope and aspect, and 

their relative impacts on grapevine performance.  Sites with steep slopes hinder the practical use 

of machinery, and topography also affects cool air movement down slopes; therefore, moderate 

slopes (5%-15%) are regarded as optimum values (Jones et al., 2004). The direction of slope 

(aspect) is likewise highly influential on the performance of certain vineyards. In the Northern 

Hemisphere, southern facing slopes enable maximum solar insolation and heat accumulation, 

and are thus classified as optimum. 

 

 

 

 



142 
 

Suitability assessment 
 

Suitability analysis focused on cropland assessment is necessary to determine the full 

potential of land resources for the development of a sustainable agricultural production (Nisar 

Ahmed et al., 2000). It is a function of crop requirements and the physical characteristics of a 

region, and is a process that helps to quantify the convergence of land characteristics with crop 

requirements (FAO, 1976). Land suitability evaluation for crops uses suitability ratings as a 

measure of land characteristics based on climate, terrain, and soil properties (FAO, 1976).  

Structure of suitability classification 

The Food and Agricultural Organization of the United Nations (FAO, 1976) has defined 

the framework structure for land suitability classification based on different categories, with land 

being classified based on its capacity for a given use. There are four main categories of land 

suitability with land suitability order the most generalized category; the order is further divided 

into suitable (S) or not-suitable (N) for the proposed use of the land. These land suitability orders 

are further divided into several classes indicating the degree of suitability within each order. For 

the “suitable” order, three main classes are recommended. A suitability order with three classes 

includes highly suitable (S1), moderately suitable (S2), and marginally suitable (S3) (Table 5.1.). 

The differences in the suitability classes are mainly related to the relationship between the 

benefits and the inputs. The “not-suitable” order is usually divided into two classes: currently not 

suitable (N1) and permanently not suitable (N2) (Table 5.1.). There are other classes, including 

not relevant (NR), which are rarely used and refer to areas that have not been assessed for the 

proposed land use.  
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Table 5.1. Major land suitability orders and classes adopted for our study based on FAO (1976). 

Orders Classes Description 

Suitable (S) 
Highly suitable (S1) No significant limitation for a given land use. 
Moderately suitable(S2) Minor limitations for a given land use. 
Marginally suitable(S3) Moderate limitations for a given land use. 

Non- suitable(N) Currently not suitable(N1) 

Major limitations that cannot be corrected with 
current knowledge; costs for any changes not 
deemed acceptable. 

Permanently not suitable(N2) 
Limitations are severe and the successful use of 
the land for a given use is not possible. 

 

The classes can be further divided into subclasses; the aim of defining subclasses within a 

class is to indicate the limitations and any required improvements. The final and most detailed 

category of land suitability is “land suitability units,” which indicate minor differences in 

management required for each subclass (FAO, 1976).  

The fundamentals of vineyard land assessment have been discussed in detail by Dry and 

Smart (1988); Gladstones (1992); Jackson (2008); and Sanga-Ngoie et al. (2010). In the U.S., 

Magarey et al. (1998) published the first online site-selection maps for New York.  Grape 

regions in Eastern California were analyzed by Watkins (1997) using GIS, in Oregon by Jones et 

al. (2004), and in Illinois by Kurtural et al. (2006).  Most studies for site selection in the PNW 

have been conducted by Jones et al. (2004; 2006; 2010); while Yau et al., (2011; 2013; 2014) 

developed a GIS for the inland PNW, and analyzed key spatial biophysical parameters with 

focus on the soil properties of the region.   
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Fuzzy logic 
 

Fuzzy logic was first introduced by Zadeh (1965) and has been used as a non-statistical 

method for geographical decision-making (Fisher, 1996; Tavana et al., 2016). Initial attempts to 

introduce fuzzy set theory into GIS applications were conducted by Robinson and Frank (1985). 

Fuzzy logic provides a smooth transition between non-members and members of a set, by 

avoiding the sharp boundaries between non-members and members. Fuzzy logic allows for 

continuous classifications of variables, along with proper handling of uncertainty, which yields 

more realistic outputs. For a fuzzy set A, the continuum of membership grades are represented by 

a class of events X={x}. This class of events is characterized by a fuzzy membership 

function ; the membership function takes a real number in the interval of [0, 1] (Equation 

5.1.) (Zadeh, 1965; Nisar Ahamed et al., 2000; Pan et al., 2011; Tavana et al., 2016).     

                         (5.1.) 

For a fuzzy set A, the characteristic function is often called a membership function and 

can be represented as follows (Equation 5.2.), where U is the universal set and takes on all values 

between 0 and 1.  

                              (5.2.) 

 

The assessment of land suitability for agricultural purposes has borrowed from fuzzy 

logic, which has been applied to single crop suitability assessment (Chang and Burrough, 1987; 

Van Ranst et al., 1996; Oberthur et al., 2000; Braimoh et al., 2004; Joss et al., 2008), as well as 

multiple crop suitability assessment (Sicat et al., 2005; Reshmidevi et al., 2009; Avellan et al., 

2012; Zabel et al., 2014; Das and Sudhakar, 2014). For grapevines, few studies have been done 

on the application of fuzzy logic focusing on the relationship between vintage quality and other 
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environmental variables (Grelier et al., 2007; Paoli et al., 2005; Tagarakis et al., 2014; Perrot et 

al., 2015). The fuzzy expert system has been applied for evaluation of the impact of agronomical 

practices and organic viticulture on the environment (Fragoulis et al., 2007); evaluation of the 

impact of micrometeorological conditions on pesticide applications (Gil et al., 2008), and 

delineation of management zones (Tagarakis et al., 2012; Urretavizcaya et al., 2014; Morari et 

al., 2009). Coulon-Leroy et al. (2012; 2013; 2014) developed a vine vigor model using a fuzzy 

set based on data related to soil, rootstock, and inter-row management strategies. However, to 

date, no single study has applied fuzzy logic to land assessment for evaluation of vineyard 

potential in a region.  

In the PNW region of the U.S there is great potential for growing wine grapes, and the wine 

industry in that region is expanding vigorously. Out of this arises the need for a comprehensive 

land assessment system, which could help determine the potential of various regions for growing 

grapes, and could prove a useful tool for determining areas requiring further assessment.  The 

objective of our study was the development of a land assessment system for aiding in the 

selection of potential grape-growing sites. Our study used fuzzy logic to combine various 

biophysical parameters and obtain vineyard potential scores for the chosen region.  

Materials and Methods 
 

Our land assessment system spatially covered Washington State, located in the PNW 

region of the U.S. Parts of central and north-eastern of Oregon were also included in the study 

area in order to better represent the American Viticultural Areas (AVAs) located in the region. 

The spatial datasets used in our study were obtained from various online public domain sources. 

The majority of data was downloaded from the United States Department of Agriculture (USDA) 

geo-spatial gateway website (GDG, 2015) for both Washington and Oregon.   
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A Digital Elevation Model (DEM) was obtained from the National Elevation Dataset 

(NED), provided by the U.S. Geological Survey (USGS). For this study, the NED DEM at a 10 

m spatial resolution was obtained; other derivatives of elevation, such as slope and aspect, were 

also computed using the NED DEM dataset within the ArcGIS 10.2. Soil data was obtained from 

the gridded SSURGO (gSSURGO), which is a product of the National Cooperative Soil Survey 

(NCSS; Soil Survey Staff, 2015). The spatial resolution of soil data is 10 m (NRCS, 2015); 

several key soil parameters, including soil texture, soil pH, and depth to any restrictive layer 

were retrieved from the gSSURGO database.  Weather data was obtained from the University of 

Idaho’s Gridded Surface Meteorological Data (UI GSM, 2015); this weather dataset 

(Abatzoglou, 2011) was developed by employing Parameter-elevation Regressions on the 

Independent Slope Model (PRISM; Daly et al., 2008). Its spatial attributes and regional-scale 

reanalysis and daily gauge-based precipitation were obtained using the North American Land 

Data Assimilation System Phase 2 (NLDAS-2; Mitchell et al., 2004).  

  The Crop Data Layer (CDL) is a georeferenced, crop-specific land cover dataset that 

encompasses over 100 crop categories for the continental U.S. Several satellite remote-sensing 

products have been used for development of the CDL as of 2013 (Landsat 4/5/ 7 and Indian 

remote sensing advanced wide field sensor images, MODIS, DMC satellites, Deimos-1 and UK-

DMC 2, and Landsat 8), and the data has a spatial resolution of 30 m. It was developed by 

running a supervised land cover classification over the satellite images; the CDL is produced 

once per year for the continental U.S. (Boryan et al., 2011; Boryan et al., 2012; Han et al., 2012).   

The land cover data utilized in our study was mainly used for evaluation; for the first 

application a mask was developed based on land cover type (Kurtural et al., 2007) to classify the 

study area into two major classes a) restricted areas currently covered with a land cover such as 
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forest or urban areas that make the conversion of the land parcel into a vineyard almost 

impossible; b) land covers that have the potential to be turned into a vineyard, such as fallow 

land or an orchard (Table 5.2.). For the second application, the land cover class corresponding to 

“grape” was selected and a data layer was developed that only included grape land cover. This 

data layer was then used for the determination of potential vineyard scores are already 

established in the study area.   

Table 5.2. Initial land covers in the study area and their corresponding scores for the developed 
land cover mask. 

Land-cover Score Land-cover Score 
Corn 1 Open water 0 
Sweet corn 1 Perennial snow/ice 0 
Mint 1 Developed 0 
Barley 1 Forest 0 
Wheat 1 Woody wetlands 0 
Alfalfa 1 Herbaceous wetlands 0 
Other hay 1 

  Dry beans 1 
  Potatoes 1 
  Onions 1 
  Lentils 1 
  Peas 1 
  Hops 1 
  Fallow cropland 1 
  Barren 1 
  Cherries 1 
  Peaches 1 
  Apples 1 
  Grapes 1 
  Other tree fruits 1 
  Shrubland 1 
  Grass/pasture 1 
   

Since the land cover data had limited accuracy, a confidence layer was published along 

with the land cover data layer using the national cropland data layer (NASS, 2015). The 
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confidence layer provides confidence scores as a percentage ranging from 0 for a low confidence 

in the accuracy, to 100 for a very high confidence in the accuracy, such that the classification is 

valid (Liua et al., 2004). The confidence layer together with the data layer only containing areas 

with grape land cover were used to omit any pixels with a low confidence score. Hence, only 

pixels that contained grape land cover and were associated with a confidence score of 100 were 

selected.  

Statewide water rights data for Washington was obtained from the Department of Ecology 

and included spatial location of the surface water points of diversion available as a vector data 

model (ECY, 2015). The study area was then divided into two classes based on water rights, and 

a mask was developed to represent the two classes, which included regions with water rights and 

regions without water rights. For Oregon the water rights data was obtained from the Department 

of Water Resources website (WRD, 2015); this water rights mask was then coupled with the land 

cover mask to further restrict the available areas for potential vineyard development. 

Data Transformation (Fuzzification) 
 

The input datasets had various ranges and units, thus in order to bring the input data into a 

common scale the layers were transformed. The major classification functions used to transform 

the various input datasets included Gaussian function, exponential growth, and exponential 

decay. The Gaussian function has the following form: 

    (5.3.) 

where x is the input values, a is the upper bound of function, b is the position of the center of the 

peak and c is the width of the function curve (Figure 5.1.).  



149 
 

  

 

Figure 5.1. Schematic figure of a Gaussian function (where b is the position of the center of the 
peak and c is the width of the function curve) (i). The schematic figure depicting the logistic 
functions is located on the right, where x0 is the x value of the mid-point (j). 

 

The logistic function, which can either have a form of logistic growth or a logistic decay, 

generally has the following equation (Equation 5.4.): 

(5.4.) 

where e is the natural logarithm base; x0 is the x value of the midpoint, L is the upper bound of 

the function, and k is the steepness of the function (Figure 5.1.). 

The major input biophysical parameters were transformed using the Gaussian, logistic 

growth, and logistic decay functions discussed earlier. Later, a fuzzy overlay procedure was 

applied to combine input raster datasets together and obtain vineyard potential scores. Three key 

overlay methods employed in our study were fuzzy gamma, fuzzy sum, and fuzzy product. The 

overlay process using fuzzy gamma (Equation 5.5.) was developed based on the algebraic 

product of fuzzy sum and fuzzy product, but the fuzzy sum is raised to the power of γ and the 

fuzzy product is raised to the power of (1-γ) (ESRI, 2015).    

i j 



150 
 

(5.5.) 

 The fuzzy sum overlay method adds the fuzzy scores of each input raster for each pixel; 

however, it does not use the algebraic method for adding the input layers (ESRI, 2015). 

(5.6.) 

The fuzzy product overlay method multiplies all input data layers for each individual 

pixel. The output of fuzzy product is usually smaller than all the inputs; when the number of 

input parameters is high the value of the output data layer can be quite small (ESRI, 2015). 

(5.7.) 

The fuzzy gamma was mainly applied to develop topographic and weather potential 

scores, where γ was assumed to be 0.9 because it produces results thatare a combination of fuzzy 

sum and fuzzy product, and the fuzzy sum was applied to develop the soil potential scores.  The 

main reason for applying the fuzzy sum to the overlay soil parameters is the wider margin of 

amendments that can be done to correct for minor departures in soil properties from the optimal 

ranges. The final vineyard potential was also computed using the fuzzy gamma method, with 

weather, topographic, and soil potential layers used to obtain the final vineyard potential scores.  
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Topographic fuzzification 
 

The elevation data was initially transformed by a Gaussian function for elevations 

ranging from 0 m to 670 m (Table 5.3.), which was based on the classes suggested by Kurtural et 

al. (2007), where the highest-ranking elevations (259 m-393 m) were assigned as the peak of the 

function. The elevation suitability scores ranged from 0 to 1, where zero refers to least suitable 

areas based on their elevation and 1 refers to the locations with the most suitable areas regarding 

elevation.  
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Table 5.3. Elevation based on Kurtural et al. (2007), soil pH (White, 2009; Dry and Coombe, 
2004), and soil texture rankings.  

  
 

Elevation   
Elevation class  (m) Class ranking 
>137 2 
137-152 4 
152-168 6 
168-183 8 
183-198 10 
198-213 12 
213-229 14 
229-244 16 
244-259 18 
259-393 20 
393-488 10 

Soil pH   

pH Class ranking 
<=5, >=8.4 1 
5.5-6.5, 8-8.3 2 
6.5 - 8.0 3 

Soil texture   
type Class ranking 
Sandy loam 4 
Loam 4 
Very fine sandy loam 4 
Loam very fine sand 4 
Coarse sandy loam 4 
Silt loam 3 
Loamy sand 3 
Loamy fine sand 3 
Loamy coarse sand 3 
Silt  2.5 
Silty clay loam 2 
Silty clay  2 
Clay loam 2 
Sandy clay loam 2 
Clay 1 
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The slope of each pixel was transformed based on a Gaussian function using class 

rankings of slopes developed by Jones et al. (2004). The function was applied to slopes ranging 

from 0-30 %, where the upper bound of function (Equation 5.3.) was defined at 10% slope 

because the 5-15% slope gets the highest preference based on previous studies (Jones et al., 

2004).  The aspect in each pixel was transformed based on class ranking reports obtained from 

Jones et al. (2004). A Gaussian function was used to transform the aspect to suitability scores 

ranging from 0 to 1, where the optimal aspect range (southern-facing slopes) was assigned as the 

upper bound of the Gaussian function (Equation 5.3.), and were assigned final scores of 1. The 

lowest suitability score refers to regions with northern-facing slopes; hence, these areas received 

final scores of 0.  

Soil fuzzification 
 

Several key soil parameters, such as available water holding capacity, soil drainage, soil 

organic matter, soil pH, depth to any restrictive layer, and soil texture, were obtained from the 

soil database (gSSURGO) for the study area. Among these parameters, soil pH, depth to any 

restrictive layer, and soil texture were selected for incorporation into the soil component of the 

system, and the rest of the dataset were used as auxiliary information for further analysis of the 

suitability of a specific land parcel. The soil pH for the study area was transformed by a Gaussian 

function that covered a range of 5 to 8.4, with optimum pH between 6.7 and 7.2 because this 

range make the micro and macro nutrients available to the roots (Table 5.3.).  

The depth to any restrictive layer was transformed into a dataset ranging from 0 to 1, 

based on the classification reported by Yau et al. (2014) using a logistic growth function 
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(Equation 5.4.). This transformation required all regions with a shallow restrictive layer (<51 cm) 

be assigned a score of zero, because as the depth increases toward 1 m, the score also increases, 

and depths that are equal or greater than one meter are assigned a score of 1. 

The soil texture classes for our study area were categorized into 5 major classes (Table 

5.3.); these classes were then further transformed into a scale with a range from 0 to 1 using a 

logistic growth function. This transformation implied that, as the amount of clay in soil 

increases, the final score decreases due to its impact on the water retention and availability of 

water to the roots; hence, soils with sandy textures obtain higher scores than clayey or silty soils. 

This classification system is a useful tool for determining areas that may need extra soil 

amendment.  

Weather fuzzification 
 

Several bio-climatic indices were computed based on daily weather data provided by the 

UI GSM, which covered the 30-year period between 1983 and 2012. These included Growing 

Degree Days (GDD); the Huglin Index(HI); Biologically Effective Degree Days (BEDD); Frost 

Free Days (FFD); dynamic minimum temperature; Growing Season Temperature (GST); Length 

of Growing Season (LGS); Growing Season Suitability (GSS); Mean Thermal Amplitude 

(MTA); Latitude Temperature Index (LTI), the Hydrothermic Index (HyI), and the Cold Damage 

Index (CDI). The growing degree days or Winkler index (WI) (Winkler et al., 1974; Jones et al., 

2010) takes into account the degree day units accumulated during the growing season with a base 

temperature of 10°C (Equation 5.8.). It is assumed that the growing season begins on April 1st 

and ends on October 31st (Winkler et al., 1974; Jones et al., 2010).  
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(5.8.) 

The GDD were then transformed into a scale ranging from 0 to 1, based on previous 

classifications reported by Jones et al. (2010). Jones et al. (2010) reported five main regions 

based on GDD values ranging from 850 to 2700, where values lower than 850 were considered 

too cold, and values higher than 2700 were considered too hot. For this study, the GDD range 

started at 850 and went up to the maximum range for the given region, which was 1389 GDD. 

For the transformation, a logistic growth function was used to convert the GDD scores into least 

favorable and optimal scores ranging from 0 to 1.   

The Dynamic Minimum Temperature Index is a modification of the Minimum 

Temperature developed by Hidalgo (2002). The index was modified in order to account for the 

the dynamic nature of cold hardiness and frost risk as related to growing season and grapevine 

development. This index compared the daily minimum temperature against a threshold that 

varied from month-to-month, and reported the number of days that the minimum air temperature 

dropped below the threshold value. The dynamic minimum temperature scores where then 

transformed into a scale of 0 to 1 via use of a logistic decay function. The function assigns the 

highest score (1) to zero incidents and declines as the number of incidents increases to the lower 

threshold value of 60. This lower boundary of the function was set to a value of 60 based on the 

average highest dynamic minimum temperature value for the AVAs in our study area.  

Frost Free Days represent the length of the growing season in terms of the number of 

days between the last frost in spring and the first frost in fall (Magarey et al., 1998).  The FFD 

scores were transformed using a logistic growth function, with a score of zero set for FFD values 
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of 150 days or less, based on previous reports by Yau et al. (2014); they gradually increased to a 

score of 1 for FFDs reaching 180 days or more.  

The Huglin Index reflects heat accumulation during the growing season of a particular 

region (HI; Huglin, 1978), using a day-length coefficient to adjust the accumulated daily heat 

units based on the latitude (Equation 5.9.).  

(5.9.) 

where k is the latitude/day length adjustment index, and 10 indicates the threshold temperature 

above which grapes are considered active. HI classes were previously established by Jones et al. 

(2010), and were used to fit a logistic growth function to the HI values in our study. The function 

assigns a score of zero to HI ≤ 1200   and then gradually increases the score to 1 when the HI 

reaches 2601. 

Biologically effective degree days also deals with heat accumulation during the growing 

season (Gladstones, 1992), but also considers a diurnal range adjustment or a latitude/day-length 

adjustment, and basically eliminates heat accumulation above 19°C or below 10°C (Equation 

5.10.) 

(5.10.) 

Where DTR adj =  

where k is an adjustment for latitude/day length, DTR is Diurnal Temperature Range, DTRadj is 

the adjusted Diurnal Temperature Range based on different ranges of air temperature.  The 

BEDD classes (Jones et al., 2010) were then transformed using a logistic growth function where 



157 
 

any BEDD value of 1000 assigned a score of 0 and then the scores gradually increased to a score 

of 1 as BEDD reaches a value of 1883.  

The Latitude Temperature Index (LTI) (Jackson and Cherry, 1988) is computed by 

multiplying the mean temperature of the warmest month by 60 - the latitude.  This index was 

transformed using a logistic growth function that assigned a score of zero to LTI values of zero, 

with the scores gradually increasing to 1 when the LTI values reached 195.  

The Growing Season Suitability index (GSS) (Malheiro et al., 2010; Santos et al., 2012b) 

reports the ratio of the number of days for which the daily temperature is higher than 10°C to the 

total number of days between April 1st and September 30th. Since this index reports a ratio and 

all our values were already between 0 and 1, no transformation was applied. The Growing 

Season Temperature (GST) (Jones, 2005a) reports the average daily temperature for a growing 

season of April to October. This index was transformed using a logistic growth function that 

would assign a score of 0 to GST values lower that 13°C (Jones et al., 2010) up to a score of 1 

for GST values of 18°C.  

The Length of Growing Season (LGS) (Jackson, 2008) is an index for counting the 

number of days when the mean daily air temperature from April to October is above 10°C. LGS 

values were transformed using a logistic growth function starting at 150 days for an index of 0, 

and gradually increasing to an index of 1 when the LGS reached 180 days.  

The Hydrothermic Index (HyI) (Branas et al., 1974) is based on precipitation and air 

temperature, and calculates the relative risk of certain diseases such as downy mildew as well as 

water availability. This index was transformed to a range between 0 and 1 using a logistic decay 

function.  
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  The Mean Thermal Amplitude (MTA) (Mullins et al., 1992; Ramos et al., 2008) is based 

on the difference between the daily maximum and minimum air temperatures during the month 

of September. For our study, the MTA was transformed into a scale ranging from 0 to 1 using a 

logistic growth function, for which MTA value of 5.7°C   were assigned a score of 0, and 

gradually increased to a score of 1 when MTA values reached 20.8°C.  

The grapevine cold damage index is based on modifications of the cold hardiness model 

developed by Ferguson et al. (2011). The cold damage index determines the number of times the 

daily minimum temperature drops below a predicted temperature at which 50% of buds are 

injured due to freeze (LT50) (Ferguson et al., 2011; Ferguson et al., 2014). This index was 

transformed using a logistic decay function, and CDI values of 0 were assigned a score of 1, 

gradually decreasing to a score of 0 as the value of the CDI increased to a cut-off threshold of 40 

events. This cut-off threshold was obtained using the average CDI over a period of 30 years for 

all the AVAs. 

Fuzzy Logic Implementation and Vineyard Potential Scores  
 

The application of fuzzy logic for spatial suitability analysis was utilized in several stages 

of our study. During the initial stage, the data layers were transformed into a layer with values 

ranging from 0 to 1. In the next stage the weather, topography, and soil potential scores were 

computed as the three main components for determining a vineyard’s potential. To determine 

topographic potential, the slope, aspect, and elevation data layers were combined using fuzzy 

gamma (γ=0.9). The weather potential was determined by applying the fuzzy gamma function 

(Equation 5.5.) to various bio-climatic indices, and different combinations were defined based on 

6 different scenarios (Table 5.4.). The scenarios were based on the recommendations from 

previous studies (Table 5.4) and also some hypothesis testing.  Lastly, the soil potential was 
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developed by applying the fuzzy sum function (Equation 5.6.)  to the soil pH, soil depth, and soil 

texture data layers. During the final stage the vineyard potential scores were determined by 

combining the weather, soil, and topographic potential scores (a fuzzy gamma (γ=0.9) function 

was applied to combine these three scores).  

Table 5. 4. Weather scenarios based on various bio-climatic indices. 

Scenario Bio-climatic indices* Based on 
1 GDD, HI, BEDD,GST Jones et al., 2010 
2 GDD, FFD Yau et al., 2013 
3 LTI, HI Jackson and 

Cherry, 1988 
4 HI, GDD, LTI, FFD, MTA  
5 GDD, FFD, GST, LTI, LGS, DyMin. Temp.  
6 BEDD, DyMin. Temp., CDI, FFD, GDD, GSS, GST, 

HI, HyI, LGS, LTI, MTA 
 

*Growing Degree Days (GDD); the Huglin Index (HI); Biologically Effective Degree Days (BEDD); Growing 
Season Temperature (GST); Frost Free Days (FFD); Latitude Temperature Index (LTI); Mean Thermal 
Amplitude (MTA); Length of Growing Season (LGS); Cold Damage Index (CDI); Dynamic Minimum 
Temperature (DyMin. Temp.); Growing Season Suitability (GSS); Hydrothermic Index (HyI). 

 
For the interpretation of our results, the output layers were first re-classified into five main 

classes based on the FAO land evaluation system (FAO, 1976). This step, referred to as de-

fuzzification, was applied in order to make the visualization of the fuzzy logic outputs more 

intuitive for users. The final output datasets for each scenario also featured five major classes, 

including S1, S2, S3, N1, and N2, and vineyard potential was organized within the five major 

classes, assuming an equal interval (Table 5.5.; Figure 5.2.). 

Table 5. 5. Major classes for determining vineyard potential. 

Suitability range Class Linguistic equivalent 
0.8-1 S1 High potential 
0.6-0.79999 S2 Moderate potential 
0.4-0.59999 S3 Low potential 
0.2-0.39999 N1 No potential 
0-0.199999 N2 Not applicable 
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Evaluation 
 

The evaluation of vineyard potential scores was conducted for both ideal locations and 

non-ideal locations.  For ideal locations, evaluation included obtaining vineyard potential scores 

for established vineyards and determination of the percent area of each vineyard for each 

potential class. In addition, the locations of several premium grape-producing vineyards within 

Washington were obtained and their vineyard potential scores were used to evaluate the general 

performance of our land assessment system. These premium vineyards were located in eight 

different American Viticultural Areas (AVAs); and are considered premium due to a 

combination of several factors such as biophysical and quality traits; the average vineyard 

potential score for each premium vineyard was computed for every scenario. This method was 

also used to separate our study area into three main classes: a) areas with a vineyard potential 

score higher than the average potential score of the premium vineyards; b) areas with vineyard 

potential scores below the average potential score of premium vineyards; and c) areas with 

restricted application due to limitations imposed by land cover or water rights.   

In this study, final vineyard potential scores were also assessed for locations that lacked 

certain criteria required to support a successful, sustainable vineyard.  The evaluation of non-

ideal sites was conducted by applying a conditional algorithm to several datasets and developing 

a final dataset that classified the study area into several regions. To develop the conditional 

restrictions, five layers were incorporated into the conditional statement, including elevation, 

slope, depth to any restrictive layer, FFD, and GDD (Table 5.6.). These layers were selected 

because their cut-off thresholds were regarded as critical to vineyard establishment. For example, 

slopes steeper than 30% severely limit vineyard development.  
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Table 5. 6. Summary of rules applied for evaluation of non-ideal sites. 
Layers Critical range 

Elevation > 1000 m 
Slope  > 30 % 
Frost Free Days (FFD) < 150 days 
Growing  Degree Days (GDD) < 875 GDD 
Depth to any restrictive layer in soil < 51 cm 

 

Our main objective in evaluating non-ideal sites was to acknowledge that computed potential 

scores accurately represent reality and that our methodology had the ability to capture both high 

and low scores with high spatial accuracy. The method employed in all six scenarios and the 

percentage for each class range was reported accordingly.   
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Figure 5. 2.Workflow of the overall study method. 
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Results and Discussion 
 

Our vineyard potential scores were computed and reported for the study area using a 

fuzzy rule-based system. The potential scores ranged from 0 to 1; regions with a potential score 

of 0 represented the “not applicable” class (Table 5.7.), and a score of 1 meant that there was a 

great potential for grapevine growth and development in a particular location. The percentage for 

each class was then reported for each scenario.  

When restrictive land cover or lack of water rights were not considered, scenario 6 (Table 

5.4.) had the smallest area (20 %) in the “high potential” class, whereas scenario 2 (Table 5.4.) 

had the greatest area (34.3 %) in the “high potential” class. Since the difference between the 

scenarios is solely based on the difference in their weather components, it can be interpreted that 

relying only on GDD and FFD for the computation of the weather components might be 

contributing larger areas being categorized as “high potential” in scenario 2. However, in 

scenario 6, there are more bio-climatic indices contributing to the weather component, possibly 

resulting in a smaller percentage of the area being categorized as “high potential.”  Scenario 6 

not only had the smallest area of “high potential” land, but also had the greatest amount of land 

(26.8 %) categorized as “not applicable” (Table 5.7.).  

Table 5. 7. Vineyard potential classes for all areas. 

Scenario* 
Not applicable 
(% area) 

No potential 
(% area) 

Low potential 
(% area) 

Moderate potential 
(% area) 

High potential 
(% area) 

1 4.0 17.4 25.1 27.2 26.4 
2 11.3 14.4 15.1 24.9 34.3 
3 26.7 1.4 11.2 28.2 32.4 
4 26.7 1.3 11.6 29.8 30.6 
5 11.0 18.4 15.9 28.2 26.4 
6 26.8 5.1 18.7 29.4 20.0 

Average 17.8 9.7 16.2 28.0 28.4 
*See Table 5.4. for a complete list of weather scenarios 
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The vineyard potential scores for established vineyards in our study area (a total of 

40,185 ha) were obtained for each scenario, and the results revealed that 97.3 % of the vineyards 

were located in “high potential” regions, 2.7 % of the vineyards were located in “moderate 

potential” regions, and none were located in the “low potential” regions (Table 5.8.). 

Table 5. 8. Vineyard potential classes for grape land cover based on CDL for all scenarios. 

Scenario* 
Moderate potential 
(% area) 

High potential 
(% area) 

1 3.9 96.1 
2 2.7 97.3 
3 2.6 97.4 
4 3.0 96.9 
5 3.7 96.3 
6 0.0 100.0 

Average 2.7 97.3 
*See Table 5.4. for a complete list of weather 
scenarios 

 

When restrictive land covers or lack of water rights was taken into consideration, our 

results indicated a total area of 78.5 % was masked (Table 5.9.; Figure 5.3.). On average, each of 

the scenarios had an area of 11.4 % with a vineyard potential score greater than 0.8, classifying 

them as “high potential.” Once again, scenario 6 again had the smallest area (9.3%) classified as 

“high potential,” but it also had the greatest area (7.2%) classified as “moderate potential,” 

adding up to an area of 16.5% with potential scores higher than 0.6, and also the greatest area 

(3.4%) classified as “low potential.” Scenario 3 (Table 5.4.) had the greatest area (13.5%) in the 

“high potential” class, but also had the smallest area (5.5%) with “moderate potential,” adding up 

to an area of 19% with a potential score higher than 0.6, and the smallest area (1.3 %) classified 

as “low potential.”  
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Table 5. 9. Vineyard potential classes post-exclusion of the restrictive areas (total study 

area is 19,070,000 ha). 

Scenario* 
Restricted 
(% area) 

Not 
applicable 
(% area) 

No 
potential 
(% area) 

Low 
potential  
(% area) 

Moderate 
potential 
 (% area) 

High  
potential 
(%area) 

1 78.5 0.1 0.8 2.5 6.0 12.1 
2 78.5 0.4 1.3 2.6 5.6 11.6 
3 78.5 0.9 0.2 1.3 5.5 13.5 
4 78.5 0.9 0.2 1.8 6.8 11.7 
5 78.5 0.4 1.6 2.8 6.4 10.2 
6 78.5 0.9 0.7 3.4 7.2 9.3 

Average 78.5 0.6 0.8 2.4 6.2 11.4 
*See Table 5.4. for a complete list of weather scenarios 
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Figure 5. 3. Main vineyard potential classes for scenario 1(a); scenario 2(b); scenario 3(c); 
scenario 4(d); scenario 5(e); scenario 6(f). For a complete list of scenarios see Table 5.4. 
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Ground truthing for premium vineyards  
 

The evaluation of established vineyards in our study area indicated that the majority are 

located in “high potential” regions; therefore, future potential vineyards should also be located in 

areas categorized as “high potential.” However, there is a substantial sub-class variation within 

vineyards categorized as “high potential,” since their classification scores ranged from 0.80001 

to 1. Therefore, the calculation of vineyard potential for several vineyards regarded as 

“premium” is a good benchmark for determining the best locations for vineyard establishment 

(Figures 5.4. and 5.5.; Table 5.10). 
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Table 5. 10. The potential score of premium vineyards located in various American Viticultural 
Areas (AVAs).  

  
Scenarios* 

Vineyard ID 
American Viticultural  
Areas 1 2 3 4 5 6 

1 Columbia Gorge 0.86 0.87 0.87 0.87 0.86 0.84 
2 Columbia Gorge 0.71 0.77 0.76 0.76 0.73 0.69 
3 Columbia Valley 0.99 0.99 0.99 0.99 0.99 0.98 
4 Columbia Valley 0.85 0.86 0.86 0.86 0.86 0.84 
5 Horse Heaven Hills 0.96 0.96 0.96 0.96 0.96 0.95 
6 Puget Sound 0.70 0.88 0.73 0.80 0.83 0.72 
7 Red Mountain 0.82 0.84 0.84 0.83 0.83 0.81 
8 Rocks District 0.82 0.85 0.85 0.84 0.85 0.81 
9 Rocks District 0.85 0.86 0.86 0.86 0.86 0.85 
10 Rocks District 0.89 0.91 0.91 0.90 0.91 0.89 
11 Walla Walla 0.85 0.87 0.87 0.86 0.86 0.84 
12 Walla Walla 0.94 0.95 0.95 0.95 0.95 0.93 
13 Walla Walla 0.87 0.89 0.89 0.89 0.89 0.86 
14 Walla Walla 0.87 0.88 0.88 0.88 0.88 0.86 
15 Walla Walla 0.88 0.91 0.91 0.90 0.91 0.87 
16 Walla Walla 0.83 0.85 0.85 0.85 0.85 0.81 
17 Walla Walla 0.90 0.93 0.93 0.93 0.93 0.89 
18 Walla Walla 0.92 0.94 0.94 0.94 0.93 0.91 
19 Walla Walla 0.92 0.94 0.94 0.94 0.94 0.91 
20 Walla Walla 0.95 0.97 0.97 0.97 0.97 0.94 
21 Walla Walla 0.89 0.90 0.90 0.90 0.90 0.89 
22 Yakima Valley 0.89 0.88 0.91 0.87 0.85 0.84 

Average 0.87 0.90 0.89 0.89 0.89 0.86 
SD 0.07 0.05 0.06 0.06 0.06 0.07 

*See Table 5.4. for a complete list of weather scenarios  
 

The average score for premium vineyards ranged from 0.86 to 0.9. This variability across 

the different regions can be attributed to various environmental factors and differences in 

management strategies that may be able to compensate for a lower suitability score. In addition, 

some of the assumptions and input data might include some associated uncertainty resulting in 

differences in vineyard potential scores.  The premium vineyard scores were used as a threshold 
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to further divide the “high potential” class (Table 5.11.); the premium grape growing regions, on 

average, covered 6.3% of the study area (Table 5.11.), with scenario 4 having the smallest 

premium area (5.1%). An average area of 15.1% meant that a score was below the premium 

threshold (Table 5.11.). 

Table 5. 11. Vineyard potential classes based on premium vineyard potential scores. 

Scenario Restricted (% area) Less Suitable (% area) Suitable (% area) 
1 78.5 13.5 8.0 
2 78.5 16.0 5.5 
3 78.5 13.9 7.5 
4 78.5 15.5 5.9 
5 78.5 16.4 5.1 
6 78.5 15.4 6.0 

Average 78.5 15.1 6.3 
 

These categories help the potential users such as growers, decision makers, and 

researchers to gain a better understanding of the region and to define the premium grape growing 

regions and their associated land use characteristics. However, if a site is categorized as a 

moderate potential due to its environmental limitations, a complete onsite assessment should be 

conducted and soil and water samples should be obtained and analyzed prior to making a 

decision with respect to the suitability; this is even required for the sites with a “high potential” 

score. In addition, vineyard management practices such as installation of drainage, adding 

manure to the soil, and using heaters along with wind machines can to a limited degree offset 

some of the environmental factors such as soil poor drainage, low soil organic matter,and the risk 

of frost that can potentially limit vineyard establishment.  
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Figure 5. 4.The range of potential scores across all scenarios for each individual premium 
vineyard (See Table 5.10. for the list of vineyards). 
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Figure 5. 5. Vineyard potential scores of the premium vineyards, separated for various scenarios 
(for a complete list of scenarios see Table 5.4.).  

Ground truthing for non-ideal regions 
 

The results of our non-ideal evaluation indicated that, as the number of restricting 

parameters increases, the probability of pixels having a high vineyard potential score decreases. 

Applying the restriction rules classified the region into six classes (Figure 5.6.); for regions 

where all five parameters did not meet the requirements, none of the pixels were classified as 
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“high potential.” In areas where only one of the restrictive parameters was outside of the desired 

range, an average of 13.7% of the pixels had a vineyard potential score above 0.8 (Table 5.12.). 

It should be noted that the usually combination of several biophysical factors leads to a low score 

for a pixel. 

Table 5. 12. Vineyard potential classes based on non-ideal site evaluation.  

One conditional restriction (% area) 
Scenario Not applicable No potential Low potential Moderate potential High potential 
1 71.3 0.5 2.5 8.8 16.9 
2 71.4 1.5 6.5 14.4 6.2 
3 71.5 0.2 1.6 7.8 18.8 
4 71.5 0.1 2.5 10.2 15.7 
5 71.3 0.9 4.2 10.7 12.9 
6 71.5 0.6 4.4 11.8 11.6 
Two conditional restrictions (% area) 
Scenario Not applicable No potential Low potential Moderate potential High potential 
1 82.7 0.6 3.8 8.2 4.8 
2 82.8 0.2 5.8 6.4 2.9 
3 82.9 0.2 2.4 7.8 6.6 
4 82.9 0.4 3.7 9.1 3.9 
5 82.8 2.6 5.7 6.8 2.1 
6 83.0 1.4 6.5 7.4 1.7 
Three conditional restrictions (% area) 
Scenario Not applicable No potential Low potential Moderate potential High potential 
1 91.8 1.6 3.4 2.8 0.3 
2 92.8 3.8 2.7 0.6 0.1 
3 94.2 0.2 1.5 3.2 0.9 
4 94.2 0.3 2.0 3.2 0.2 
5 92.6 4.3 2.3 0.8 0.0 
6 94.3 1.1 3.7 0.9 0.0 
Four conditional restrictions (% area) 
Scenario Not applicable No potential Low potential Moderate potential High potential 
1 94.1 2.5 2.5 0.9 0.0 
2 96.1 3.2 0.8 0.0 0.0 
3 97.8 0.1 0.7 1.2 0.1 
4 97.9 0.2 0.9 1.0 0.0 
5 95.7 3.7 0.6 0.0 0.0 
6 97.9 0.6 1.4 0.1 0.0 
Five conditional restrictions (% area) 
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Scenario Not applicable No potential Low potential Moderate potential High potential 
1 96.8 1.7 1.2 0.3 0.0 
2 98.1 1.5 0.3 0.0 0.0 
3 99.0 0.0 0.4 0.5 0.0 
4 99.3 0.6 0.1 0.0 0.0 
5 98.0 1.8 0.2 0.0 0.0 
6 99.1 0.7 0.2 0.0 0.0 

 

Our results also indicated that when only one conditional restriction was present, scenario 

2 had a lower percentage (6.2 %) of its area with vineyard potential scores higher than 0.8. This 

may have been due to the fact that scenario 2 was developed based on GDD and FFD (Yau et al., 

2013); thus, the results may have been related to the fact that GDD and FFD were among the 

input layers used in applying the restrictions. However, when several restrictions exist, scenario 

5 and scenario 6 have the smallest percentage of areas with vineyard potential scores above 0.8 

(Table 5.12.), which can be due to several factors, such as the transformation scheme and the 

applied fuzzy rule set.  It appears that the inclusion of certain bio-climatic indices for calculation 

of weather component results in a smaller percentage of areas with scores of “high potential.” 

Since air temperature was the key weather parameter used for our calculation of the bio-climatic 

indices, then other factors such as topography, time of day, time of season, solar radiation, wind 

speed, and relative humidity can potentially influence the air temperature and air movement in a 

region, which can indirectly impact the bio-climatic indices and resulting vineyard potential 

scores. It is highly recommended that users of vineyard potential scores always obtain additional 

information regarding underlying parameters contributing to the suitability of a particular region 

for growing grapevines. Some of these critical parameters such as elevation or FFD can 

potentially be transformed into a true-false dataset that enables the narrowing down of suitable 

areas for instance having a mask for elevations that are higher than 1200 m. 
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Figure 5. 6. The conditional restrictive map used to evaluate the performance of non-ideal 
locations. 

Based on our evaluation results, non-ideal score pixels with low vineyard potential scores 

appear to have a variety of restricted environmental factors, and should be of concern to users. A 

location that has a restricting parameter may still be potentially suitable. With proper 

management and economic investment, a land parcel might be made into a successful vineyard. 

Yau (2011) reported soil and topographic suitability for individual AVAs located in inland PNW. 

The weather suitability component for that study was mainly focused on the classification of 

calculated GDD, FFD, and LTI in to high, medium, and low levels; however, their model was 

primarily concerned with edaphic and topographic parameters, and vineyard potential scores 

were not explicitly discussed.  

Our assessment results indicated that the premium vineyards located in Western 

Washington have lower vineyard potential scores than those vineyards located in Eastern 
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Washington. This is mainly due to the fact that our transformation of the input data layers were 

primarily adjusted for the regions located in Eastern Washington; in addition the classification of 

GDD values can also contribute to lower scores associated with the western Washington regions. 

However, when the goal is to compare regions across a large-scale study area, then the 

homogeneity of the method used for development of the suitability analysis is imperative. The 

differences between the scores gathered from Western and Eastern Washington show that there 

are substantial differences between these two grape-growing regions due to their local 

environmental conditions which must be addressed.  

No data layers representing the variability in management practices were used in our 

study; thus, in order to cluster the study areas based on various management strategies used in 

different regions, new databases are required. There is a need for local data collection and 

development of a statewide online database system that can be used by grape growers and 

vineyard managers. There is also a need for the development of a system that can record 

phenological events for each of the grape varieties grown in a specific region. Such a system 

could be used to update the formulation of relevant bio-climatic indices, as well as a stepping-

stone to further the development of a comprehensive analytics platform based solely on the 

behavior of grape cultivars in a specific region.  

In grape production, not only grape quantity is important, but also grape quality; 

therefore, the development of a land assessment system based on vineyard potential scores is 

more complicated than those used for other crops. Thus, there is great need for development of a 

site evaluation technique that can adjust vineyard potential scores based on the qualitative traits 

of grapes, including brix, total acid, and the anthocyanins of red cultivars. Coupling such a 

qualitative land assessment with a crowd sourcing system that reports consumer preferences for 
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specific wines and vintages in a specific AVA is a potentially beneficial advancement for use in 

these types of land assessment systems. Although, it should be noted that wine quality is 

influenced by the winemaking techniques and also the wine might be made of grapes that come 

from regions other than the wine is produced in, this makes it even harder to track down the 

grapes quality based on the wine.  

Future Work 
 

Expert knowledge is an influential factor (Morlat and Lebon, 1992; Carey et al., 2007; 

Perrot et al., 2015) in vineyard management and strategy. The ability to fully acquire this expert 

knowledge is an integral part of land assessment systems; surveys can be developed and 

implemented to obtain the insight necessary for establishment of a relative weighting system. 

Weighting systems are used to express the importance or preference of each factor relative to 

other factors that may impact the overall performance of a grapevine. One method that can be 

used to apply the requisite expert knowledge on the fine-tuning of land assessment systems is the 

analysis hierarchy process (AHP) (Saaty, 1980; Saaty, 2008; Lee and Lee, 2010; Zhang, 2009; 

Wu, 1998; Reza, 2005). AHP is based on the prioritization of various contributing factors in a 

system, and the subsequent conduction of pairwise comparison between pairs of factors. It is an 

alternative method for determining the relative importance of various input layers and then 

calculating the weighting matrix based on the results. Another method that can be explored is the 

application of remote-sensing techniques for precision viticulture (Homayouni et al., 2008; 

Santesteban et al., 2013; Badr and Hoogenboom, 2013; Couleon-Leroy et al., 2013; Badr et al., 

2015; Vaudour et al., 2015). The outcomes of remote-sensing techniques, such as time of 

phenological event, vine vigor, and vine stress status, can be further integrated into land 

assessment systems.  
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Finally, any decision regarding vineyard potential should be based on the tradeoffs 

between marketable grape production and sustainable management strategies, in order to 

guarantee sustainable productions that will also provide long-term economic benefits.  

Conclusions 
 

We conducted spatial land-assessment using biophysical models and fuzzy logic to 

develop vineyard potential scores for a study area located in the Pacific Northwest region of the 

U.S. Our results indicated that, on average, 11.4% of the study area had high vineyard potential 

score, with 97.3% of previously established vineyards located in high potential regions.  
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CHAPTER SIX  

SUMMARY AND CONCLUSIONS  

 
Background 
 

Land assessment for the suitability analysis of vineyards is the process of selecting 

potential regions for grape production based on their environmental factors. Previous work has 

either concentrated on geographical regions outside of the Pacific Northwest (U.S.) or on main 

parameters such as weather. The aim of our research was to develop a spatial land assessment 

system for the site selection of vineyards in the Pacific Northwest (PNW). During the first phase 

of this project, several potential methods were investigated as means of obtaining the requisite 

input data based on satellite remote-sensing technologies. The next phase primarily focused on 

the compilation of long-term weather data for determining various bio-climatic indices. These 

indices transform weather parameters into different categories based on grapevine response, and 

so can be used to better understand the underlying dynamics of American Viticultural Areas in 

the PNW. The final phase of our study involved choosing the biophysical parameters most suited 

for use in the development of a potential vineyard scoring system, which could then be evaluated 

using vineyards that have already been established in the study area (Figure 6.1.).  
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Figure 6. 1. Spatial database used in this study and the linkages between the different types of 
data. 

The results of our study could potentially be combined with other auxiliary information, 

such as management strategies, data from other sensors, phenological data, soil and water test 

results, this information could then be stored in a cloud-based geospatial platform for the benefit 

of growers, decision-makers, scientists and others interested in the assessment of land potential 

for grape production (Figure 6.2.). This approach was beyond the scope of our study, and may 

require extensive socio-economic information obtained from surveys and other sources to fully 

understand the true impact of such land assessment on the grape and wine industry, but is worth 

consideration. Comprehensive studies on potential user perception and expectations of such a 

system should also be conducted. Although land assessment systems can be used as provisional 
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tools for supporting onsite land evaluation for vineyard establishment, it may have some 

unforeseen impact on the economy or marketing which needs to be fully determined prior to 

giving the public access. 

 

Figure 6. 2. Potential data access pathways. 

 

The land assessment developed in our study primarily focused on the environmental 

status of a region. However, vineyard management decisions such as which grape variety to plant 

are usually based on many socio-economic factors, and are mainly driven by the potential to 

increase economic profits. Therefore, the land assessment system developed in this study and 

similar tools require further evaluation to determine its potential for success or failure; hence, 

utilizing this technology as an information support system for extension educators may be a more 

viable option. If extension educators had access to an accurate land assessment system they 

could provide support to potential growers and others interested in land assessment and 
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suitability analysis (Figure 6.2.). This is a complex problem and requires input from multiple 

sectors involved in the grape production industry in order to be solved. 

Overview 
 

This chapter summarizes the results reported in our previous chapters (2-5) and discusses 

the findings in relation to the original objectives, which were defined as follows: 

• Evaluation of available options for the selection of input data for use in 

development of a new land assessment system. 

• Usage of bio-climatic indices to improve the classification of viticultural areas in 

the Pacific Northwest.   

•  Design of a state-of-the-art methodology for development of a new land 

assessment system. 

• Formation of a land assessment system based on high spatial and temporal 

resolution biophysical data for the Pacific Northwest. 

Phenology Metrics and Satellite Data 
 

The first objective of our study pertained to the evaluation of available input data for 

development of a new land assessment system. This objective consisted of two sub-studies: a) 

the application of satellite data for obtaining the key phenological metrics of the study area; and 

b) the estimation of air temperature using satellite remote-sensing products. In Chapter 2, several 

crucial phenological metrics for grapevine production in Washington’s Columbia Valley were 

computed using MODIS NDVI data. Utilizing MODIS NDVI, our hypothesis involved a fixed 

grape growing season from the beginning of April until the end of October in the chosen study 



190 
 

area. Knowledge of growing season length and key phenological events are essential for 

adjustment of the management practices used in a region; the calculation of multiple bio-climatic 

indices also depends on the length of the growing season. We were interested in identifying 

whether these assumptions could be updated based on the geographic region, and so determined 

the growing season length, onset of greenness, end of greenness, and time of maximum NDVI 

for vineyards. Our results confirmed that this method could be successfully implemented in 

regions with a lack of access to historical phenological data, and also found that the average 

duration of a growing season is 216 days, beginning April 2nd and ending November 4th. 

Estimation of air temperature using satellite remote sensing products 

The second part of the first objective of this dissertation pertains to the employment of a 

vegetation-temperature index method for estimating air temperature. Unfortunately, the 

estimated values were not accurate enough to substitute for the ground measurement of air 

temperature. The method was used on various land cover types in the Yakima Valley, and the 

impact of each land cover type on the estimated air temperature was determined. This method is 

especially useful in regions with a lack of historical weather data due to sparse weather stations 

coverage.    

Bio-climatic Indices and Their Role in Land Assessment 
 

The second objective of this study was to obtain a better understanding of weather 

variability.  Several bio-climatic indices were calculated for a 30-year period (1983 to 2012) 

(Chapter 4). The bio-climatic indices were then used to categorize the AVAs for grape 

production based on their underlying weather performance. The results showed that the general 

climatic phenomena of a region and its topographic complexity provide moderate control of the 
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weather dynamics. The bio-climatic indices were further categorized into four major groups: 1) 

indices that mainly deal with heat unit accumulation; 2) indices that deal with low daily air 

temperature; 3) indices that use air temperature as a threshold for determining the number of 

days a certain condition will hold for a specific growing season; and 4) indices that use daily 

precipitation. These categories take into account various aspects of the climatic response of a 

region as they are based on long-term data. To successfully grow grapes in a region, one should 

initially evaluate the range of bio-climatic indices to make sure that the proposed region has 

values exceeding the lower thresholds of each indice.  However, by applying proper management 

strategies and appropriate investments, grape production can be adjusted to sub-optimal sites, 

depending on the factor involved.  

Spatial Land Assessment for Potential Site Selection of Vineyards 
 

For our final objective, presented in Chapter 5, key environmental factors were used to 

conduct a comprehensive spatial land assessment for the PNW.  Viability of the potential scores 

was further evaluated using previously established vineyards in the PNW. The results indicated 

that, on average, 11.4% of the regions evaluated were classified as having “high vineyard 

potential.” Scores for “non-ideal” sites in the region were also determined, and their scores 

corresponded with the presence of environmental conditions that can potentially restrict 

grapevine production.  

The Way Forward 
 

    In general, the results from the land assessment analysis conducted in this study and those 

of previous studies are promising; nonetheless, there is much that still needs to be addressed and 

clarified to prove the viability of this type of analysis. As spatial data becomes more readily 
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available at a higher spatial and temporal resolutions, the system’s input data can be improved; 

thereby improving the accuracy of vineyard potential scores. This is encouraging for future 

research, as it makes access to required data and information more likely. Future research 

opportunities based on our current work include:  

• Coupling of grape quality traits based on vintage across various locations, with the bio-

climatic indice scores for those same locations furthering our understanding of the impact 

that the spatial variability of weather has on the quality of grapes. This can, for instance, 

even be addressed by developing new indices that indicate potential grape quality based 

on weather conditions in a specific region.   

• Development of a dynamic data repository system with the ability to save the records of 

key phenological stages for each vineyard. Such a database, when coupled with historical 

phenological data obtained from various sources (including satellite and other remote-

sensing techniques) would have the ability to provide decision support for growers, 

managers, consultants, and extension specialists. This system could thus improve the 

knowledge of users regarding their vineyards and locations, and also provide guidance 

for adjusting management tasks based on the timing of various events.  

o Management strategies should be specifically categorized for each region and be 

made available as an auxiliary support dataset. Certain management strategies can 

be good indicators of the underlying physical environment of a region, which may 

be imposing the need for corrective measures. 

o Coupling a land assessment system with crowd sourcing data, including consumer 

preference, the reputation of a specific brand, or any associated quality traits of 

the grapes produced in specific AVAs.  
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o Additional information on land ownership, onsite soil tests, and water quality 

tests.  

o The potential impact of the land assessment tool on local and regional producers 

and its associated economic response should also be studied.  

• The estimation of phenological stages based on available satellite remote-sensing 

technology relies heavily on various vegetation indices. In this study, we only used the 

NDVI; however, other vegetation indices, such as the leaf area index (LAI) obtained 

from satellite data, can also be used to improve the estimation of key phenological stages. 

In addition, different types of sensor technologies can be used to improve the capture of 

the canopy structures for different vineyards, and then assimilate this information to help 

adjust management decisions.  

• Our study used a large number of bio-climatic indices, many showing a similar response. 

Still, there is need for the development of new bio-climatic indices that focus on 

combining the most useful indices (when appropriate).  These “combined” indices could 

potentially aid in narrowing down available land in the PNW for specific uses, including 

grape production.  

• The traditional calculation method of bio-climatic indices still needs to be updated based 

on recent advances in weather parameter technology. There have been many 

improvements in recording devices and associated sensors during recent years, such that 

some of these sensors are now able to record weather parameters in very fine temporal 

resolutions, even to 15 seconds. With the advancement of sensor technologies and the 

“internet of things,” data records will become available for use in creating very fine 

spatial and temporal resolutions. Manipulating and analyzing these data via cloud 
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technology could accelerate access to updated information, and could also assist in 

improving the definition of some already established bio-climatic indices. Most of the 

previously developed indices take into account only the daily maximum and minimum 

temperatures when computing the average daily temperature, and hourly and sub-hourly 

daily fluctuations are not well-represented based on only two observations per day. 

Consequently, the developers of the bioclimatic indices had to introduce adjustment 

factors in order to correct for the effect of seasonal fluctuations on daily air temperature.    

• The relative importance of environmental factors on grape production can be defined by 

applying new methods for ranking these factors based on their specific region. The 

analysis hierarchy process (AHP) is one such method that can be tested and utilized to 

adjust the relative importance of environmental parameters within a specific geographical 

region. AHP requires an advanced survey system based on the expert opinions as well as 

grower perception of the relative importance of various environmental and geophysical 

factors.  Future studies focusing on land assessment in the PNW region should plan to 

implement AHP or similar techniques to adjust the potential score based on the growers 

and/or experts’ perception of a region.  

Outcomes 
 

• Fuzzy logic was successfully implemented for developing a spatial land assessment 

system for grapes. 

• Key bio-climatic indices were computed for a 30-year period, and the corresponding 

bioclimatic indices for the AVAs located in Washington and parts of Oregon were 

reported.  
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• A cold damage index was established based on the cold hardiness model previously 

developed and this new index was computed for the PNW. 

• A dynamic minimum temperature Index was developed to account for variability in cold 

hardiness of grapes.  

• A Wind speed index was developed to help locate regions where wind speed often 

exceeds given thresholds.  

• Limiting factors such as water rights and land cover type were incorporated into the land 

assessment system to better match the current restrictions of the region. 

• The majority of vineyards already established in Washington are located in “high 

vineyard potential” regions as determined in this study.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDICES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



197 
 

Appendix A: Bio-climatic indices applied for climatic zoning. 
 

 

Bioclimatic  

Index 

 

Equation Reference 

Growing 

Season 

Temperature 

(GST) 

 

Jones, 2005a 

Winkler 

Index (WI) or 

Growing 

Degree Days 

(GDD) 

 

Winkler et 

al. 1974, 

Jones et al. 

2010 

Huglin Index 

(HI) 

 

 
Where k is an adjustment for latitude /day length. 

 

Huglin 1978 

Biologically 

Effective 

Degree Days 

(BEDD) 

 

 
 

Where DTR adj =  

 

Where k is an adjustment for latitude/day length. 

 

Gladstones, 

1992 

Mean 

Thermal 

Amplitude 

(MTA)  
 

For the month of September in the Northern Hemisphere. 

 

Mullins et 

al., 1992; 

Ramos et al., 

2008 

Cool Night 

Index (CI) 

 

Average daily Tmin for the month of September (Northern Hemisphere). 

 

Tonietto and 

Carbonneau, 

2004 

Minimum 

Temperature 

(Min. Temp.) 

 

Daily minimum value for each year. 

 

Hidalgo, 

2002 

Latitude 

Temperature 

Index (LTI) 

 

 
MTWM is the mean temperature of the warmest month of the growing season. 

 

Jackson and 

Cherry, 1988 
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Frost Free 

Days (FFD) 

 

Number of days between the last frost in spring and the first frost in Autumn. 

 

Magarey, 

1998 

Growing 

Season 

Precipitation 

(GSP)  
 

Where P is the daily precipitation (mm). 

 

Blanco-

Ward et al., 

2007 

Growing 

Season 

Suitability 

(GSS) 

 

Fraction of days between April to September where Tavg >10°C. 

 

Malheiro et 

al., 2010; 

Santos et al., 

2012b 

Length of 

Growing 

Season (LGS) 

 

 

Number of days between April first to end of October whereTavg >10°C. 

 

Jackson, 

2008 

 

 

 

Hydrothermic 

Index (HyI) 

 

 
Where P is the daily precipitation (mm). 

 

 

Branas et al., 

1974 

Dryness 

Index (DI) 

 

 
W0 is the initial soil water content 

P is the precipitation (mm) 

TV is the potential vineyard transpiration (mm) 

ES is the direct soil evaporation (mm). 

 

 
ETP is the potential evapotranspiration 

K is a coefficient of radiation absorption by vineyard. 

 
N is the number of days of the month 

is the number of days with effective soil evaporation  (calculated dividing P by 5mm), 

which should be equal to or lower than N. 

 

Riou et al., 

1994, 

Tonietto and 

Carbonneau, 

2004 

Composite 

Index 

(CompI) 

 

Ratio of the years simultaneously verifying 4 criteria: 

 

HI ≥ 1400°C, DI ≥ - 100 mm, HyI ≤ 5100°Cmm  

and Min. Temp. > -17°C. 

 

Malheiro et 

al., 2010; 

Santos et al., 

2012 
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Appendix B:  American Viticultural Areas (AVAs) in Washington and Oregon and various 
key bio-climatic indices computed over a 30-year period (1983-2012). 

Bio-climatic Indices Ancient Lakes of the Columbia Valley Columbia Gorge 

Min. Max. Mean ±SD Group 
letter 

Min. Max. Mean ±SD Group 
letter 

Biologically Effective 
Degree Days (BEDD) 

231 305 283 11.9 H 211 564 466 71.49 I 

Cold Damage Index 
(Five-years) 

3 17 11 2.9 D 2 40 13 7.04 C 

Cold Damage Index  
(10-years) 

3 21 13 3.6 E 3 61 23 12.66 B 

Cold Damage Index 
(20-years) 

7 40 23 6.9 F 9 104 43 20.38 C 

Cold Damage Index  
(30-years) 

9 58 30 11.1 G 10 140 56 29.07 C 

Cool Night Index (CI) 8.0 10.3 9.3 0.5 D 5.7 8.9 7.4 0.58 H 

Dynamic Minimum 
Temperature  

23 38 31 3.4 C 9 30 18 5.20 I 

Frost Free Days (FFD) 159 186 171 5.9 F 145 189 164 9.39 I 

Growing Degree Days 
(GDD) 

1379 1725 1525 61.5 D 858 1372 1089 109.62 J 

Growing Season 
Precipitation ( GSP) 

47.0 80.4 59.0 5.5 FGH 138.4 387.5 262.0 63.52 B 

Out of Growing 
Season Precipitation 
(Out-GSP) 

69.5 90.6 77.9 4.7 H 123.2 288.0 195.4 37.28 B 

Growing Season 
Suitability (GSS) 

0.86 0.92 0.90 0.0 D 0.73 0.89 0.82 0.03 J 

Growoing Season 
Temperature (GST) 

15.4 17.2 16.2 0.3 D 12.6 15.6 14.0 0.63 J 

Huglin Index (HI) 2089 2464 2248 61.6 F 1394 2098 1740 126.12 J 

Hydrothermic Index 
(HyI) 

756 1035 863 66.9 GH 992 1687 1305 146.02 C 

Latitude Temperature 
Index (LTI) 

289 315 299 4.8 I 262 313 285 10.09 J 

Length of Growing 
Season (LGS) 

171 188 179 2.8 E 145 182 165 7.58 I 

Mean thermal 
amplitude (MTA) 

15.1 17.4 16.2 0.5 HG 13.4 18.1 16.3 0.66 EF 

Wind Speed  Index 
(WS) 

10 38 19 7.0 G 20 58 32 8.80 D 
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Appendix B:  American Viticultural Areas (AVAs) in Washington and Oregon and various 
key bio-climatic indices computed over a 30-year period (1983-2012). 

Bio-climatic Indices Columbia Valley Horse Heaven Hills 

Min. Max. Mean ±SD Group 
letter 

Min. Max. Mean ±SD Group 
letter 

Biologically Effective 
Degree Days (BEDD) 

79 609 331 94.6 G 282 549 437 63.1 E 

Cold Damage Index 
(Five-years) 

0 95 14 9.6 C 3 18 9 3.6 E 

Cold Damage Index  
(10-years) 

0 157 20 16.3 C 4 26 12 4.8 E 

Cold Damage Index 
(20-years) 

1 281 36 29.8 D 6 50 20 8.8 G 

Cold Damage Index  
(30-years) 

1 378 48 41.3 D 7 75 23 12.3 H 

Cool Night Index (CI) 5.0 11.9 8.8 1.0 E 8.0 10.7 9.5 0.7 C 

Dynamic Minimum 
Temperature  

7 73 28 12.3 D 14 31 20 3.4 H 

Frost Free Days (FFD) 116 212 168 14.2 G 159 196 178 7.0 E 

Growing Degree Days 
(GDD) 

740 1908 1414 198.0 F 1210 1705 1566 86.0 C 

Growing Season 
Precipitation ( GSP) 

42.9 347.3 81.1 26.9 E 55.8 96.8 64.7 5.7 F 

Out of Growing Season 
Precipitation (Out-GSP) 

64.4 435.1 119.6 40.6 D 82.8 122.9 95.7 6.9 F 

Growing Season 
Suitability (GSS) 

0.66 0.95 0.87 0.0 F 0.82 0.93 0.90 0.0 C 

Growing Season 
Temperature (GST) 

11.5 18.1 15.6 1.1 F 14.5 17.2 16.4 0.5 C 

Huglin Index (HI) 1263 2602 2124 227.8 G 1874 2431 2289 92.0 E 

Hydrothermic Index 
(HyI) 

680 3218 1209 382.5 D 876 1299 1003 62.6 E 

Latitude Temperature 
Index (LTI) 

229 353 304 24.3 G 302 341 328 7.5 B 

Length of Growing 
Season (LGS) 

128 195 175 11.3 G 164 190 183 4.5 D 

Mean thermal 
amplitude (MTA) 

9.9 19.2 16.3 1.1 EF 14.0 17.3 16.1 0.9 H 

Wind Speed Index 
(WS) 

6 92 32 16.6 D 18 72 39 12.3 B 
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Appendix B:  American Viticultural Areas (AVAs) in Washington and Oregon and various 
key bio-climatic indices computed over a 30-year period (1983-2012). 
Bio-climatic Indices Lake Chelan Naches Heights 

Min. Max. Mean ±SD Group 
letter 

Min. Max. Mean ±SD Group 
letter 

Biologically Effective Degree Days 
(BEDD) 

148 241 204 18.9 J 215 358 295 37.6 D 

Cold Damage Index (Five-years) 6 20 13 2.4 C 21 41 30 5.5 A 

Cold Damage Index  (10-years) 7 31 16 4.6 D 34 61 47 7.6 A 

Cold Damage Index (20-years) 11 62 30 8.6 E 58 113 86 15.1 A 

Cold Damage Index  (30-years) 12 77 38 11.5 E 84 154 119 18.4 A 

Cool Night Index (CI) 7.7 10.1 8.5 0.6 F 6.3 7.6 6.8 0.3 I 

Dynamic Minimum Temperature  24 53 39 5.5 B 37 53 45 3.6 A 

Frost Free Days (FFD) 151 184 166 5.8 HI 141 151 146 2.6 K 

Growing Degree Days (GDD) 1073 1497 1329 72.2 H 1012 1362 1189 79.7 I 

Growing Season Precipitation ( 
GSP) 

71.3 102.4 83.4 8.1 E 74.7 130.7 96.3 11.0 D 

Out of Growing Season 
Precipitation (Out-GSP) 

100.6 125.9 107.8 5.3 E 94.2 132.1 112.1 6.5 E 

Growing Season Suitability (GSS) 0.80 0.89 0.86 0.0 H 0.78 0.87 0.83 0.0 I 

Growing Season Temperature 
(GST) 

13.6 16.0 15.1 0.4 H 13.3 15.3 14.4 0.5 I 

Huglin Index (HI) 1716 2180 2019 93.0 H 1687 2130 1931 98.2 I 

Hydrothermic Index (HyI) 1108 1263 1176 34.1 D 987 1103 1044 29.4 E 

Latitude Temperature Index (LTI) 249 283 269 5.8 L 266 296 281 7.0 K 

Length of Growing Season (LGS) 154 178 169 3.9 H 152 174 164 4.8 J 

Mean thermal amplitude (MTA) 13.3 17.6 15.7 1.0 I 16.5 17.8 17.4 0.2 B 

Wind Speed Index (WS) 22 32 27 2.2 F 31 44 39 2.7 B 

 

 

 

 

 

 

 

 

 

 

 



202 
 

Appendix B:  American Viticultural Areas (AVAs) in Washington and Oregon and various 
key bio-climatic indices computed over a 30-year period (1983-2012). 

Bio-climatic Indices Puget Sound Rattle Snake Hills 

Min. Max. Mean ±SD Group 
letter 

Min. Max. Mean ±SD Group 
letter 

Biologically Effective 
Degree Days (BEDD) 

68 685 319 138.4 K 268 400 329 34.4 C 

Cold Damage Index (Five-
years) 

0 9 0 1.0 I 9 27 15 4.2 B 

Cold Damage Index  (10-
years) 

0 12 1 1.3 I 13 42 23 6.1 B 

Cold Damage Index (20-
years) 

0 33 1 2.7 J 26 81 47 12.2 H 

Cold Damage Index  (30-
years) 

0 44 1 3.6 J 35 126 72 18.2 B 

Cool Night Index (CI) 7.2 11.5 9.4 0.7 D 7.5 8.7 8.2 0.3 G 

Dynamic Minimum 
Temperature  

0 20 3 2.2 L 25 40 31 3.5 C 

Frost Free Days (FFD) 91 266 230 19.1 A 146 165 157 3.8 J 

Growing Degree Days 
(GDD) 

619 1187 948 99.8 K 1176 1575 1386 102.6 G 

Growing Season 
Precipitation ( GSP) 

119.9 860.9 331.8 93.9 A 53.4 63.9 56.8 2.1 HI 

Out of Growing Season 
Precipitation (Out-GSP) 

164.0 1289.6 414.9 121.1 A 80.0 106.9 90.2 6.1 FG 

Growing Season Suitability 
(GSS) 

0.00 0.91 0.86 0.0 G 0.82 0.91 0.87 0.0 F 

Growing Season 
Temperature (GST) 

11.6 14.9 13.6 0.5 K 14.3 16.5 15.5 0.6 G 

Huglin Index (HI) 985 1719 1452 124.4 K 1833 2366 2138 135.0 G 

Hydrothermic Index (HyI) 1148 7010 3145 774.8 A 850 1031 936 33.4 F 

Latitude Temperature Index 
(LTI) 

183 253 223 18.2 M 285 318 302 8.3 H 

Length of Growing Season 
(LGS) 

0 190 176 7.5 F 162 184 174 5.6 G 

Mean thermal amplitude 
(MTA) 

7.8 14.4 11.4 1.2 J 14.9 17.9 17.1 0.7 D 

Wind Speed Index (WS) 0 62 19 11.7 G 11 49 29 10.3 E 
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Appendix B:  American Viticultural Areas (AVAs) in Washington and Oregon and various 
key bio-climatic indices computed over a 30-year period (1983-2012). 
Bio-climatic Indices Red Mountain Rock District of Milton Free Water 

Min. Max. Mean ±SD Group 
letter 

Min. Max. Mean ±SD Group 
letter 

Biologically Effective Degree 
Days (BEDD) 

354 379 365 6.7 D 873 1075 1075 51.1 H 

Cold Damage Index (Five-
years) 

4 4 4 0.0 H 3 7 5 1.1 H 

Cold Damage Index (10-years) 5 6 5 0.4 H 3 7 5 1.1 H 

Cold Damage Index (20-years) 12 14 13 0.7 H 3 8 5 1.4 I 

Cold Damage Index  (30-years) 14 16 15 0.7 I 13 33 22 6.3 H 

Cool Night Index (CI) 9.5 9.6 9.5 0.0 C 9.7 10.5 10.2 0.2 A 

Dynamic Minimum 
Temperature  

18 19 18 0.3 I 11 12 12 0.3 K 

Frost Free Days (FFD) 179 180 179 0.2 D 199 206 203 2.0 B 

Growing Degree Days (GDD) 1597 1647 1622 13.8 B 1621 1660 1649 9.7 A 

Growing Season Precipitation ( 
GSP) 

59.4 62.1 60.8 0.6 FGH 97.0 100.4 98.4 0.9 D 

Out of Growing Season 
Precipitation (Out-GSP) 

83.7 88.0 85.8 1.0 G 182.4 187.9 184.8 1.2 C 

Growing Season Suitability 
(GSS) 

0.91 0.92 0.92 0.0 B 0.92 0.93 0.92 0.0 A 

Growing Season Temperature 
(GST) 

16.6 16.9 16.7 0.1 B 16.8 16.9 16.9 0.0 A 

Huglin Index (HI) 2332 2395 2362 17.7 C 2320 2353 2332 8.4 D 

Hydrothermic Index (HyI) 901 937 916 7.5 FG 1998 2068 2040 17.0 B 

Latitude Temperature Index 
(LTI) 

323 327 325 1.0 C 334 338 337 1.0 A 

Length of Growing Season 
(LGS) 

185 187 186 0.6 B 188 190 189 0.4 A 

Mean thermal amplitude 
(MTA) 

16.2 16.5 16.4 0.1 E 15.1 16.1 15.6 0.3 I 

Wind Speed Index (WS) 15 17 16 0.5 H 24 33 29 2.2 E 
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Appendix B:  American Viticultural Areas (AVAs) in Washington and Oregon and various 
key bio-climatic indices computed over a 30-year period (1983-2012). 

Bio-climatic Indices Snipes Mountain Wahluke Slope 

Min. Max. Mean ±SD Group 
letter 

Min. Max. Mean ±SD Group 
letter 

Biologically Effective 
Degree Days (BEDD) 

338 350 343 2.9 A 286 402 339 25.7 F 

Cold Damage Index (Five-
years) 

6 8 7 0.5 F 1 17 6 4.5 G 

Cold Damage Index (10-
years) 

10 13 12 0.7 E 1 22 7 5.7 G 

Cold Damage Index (20-
years) 

20 27 25 1.6 F 1 40 13 10.8 H 

Cold Damage Index (30-
years) 

28 38 33 2.7 F 1 58 18 14.4 I 

Cool Night Index (CI) 8.5 8.9 8.7 0.1 E 8.5 11.9 10.0 0.9 B 

Dynamic Minimum 
Temperature  

23 25 24 0.4 F 14 35 22 5.3 G 

Frost Free Days (FFD) 164 168 166 1.2 H 160 206 180 11.1 D 

Growing Degree Days 
(GDD) 

1609 1643 1624 9.0 B 1388 1908 1662 127.1 A 

Growing Season 
Precipitation ( GSP) 

51.0 54.9 52.1 0.9 I 56.5 62.7 58.4 1.0 GH 

Out of Growing Season 
Precipitation (Out-GSP) 

77.4 79.3 78.1 0.6 H 65.5 85.0 73.3 4.8 H 

Growing Season Suitability 
(GSS) 

0.91 0.92 0.92 0.0 B 0.87 0.95 0.91 0.0 B 

Growing Season 
Temperature (GST) 

16.7 16.8 16.7 0.0 B 15.4 18.1 16.9 0.7 A 

Huglin Index (HI) 2408 2453 2425 10.4 A 2109 2602 2397 122.3 B 

Hydrothermic Index (HyI) 830 850 840 5.2 H 770 924 834 36.5 H 

Latitude Temperature 
Index (LTI) 

321 324 322 0.8 D 296 340 319 10.9 E 

Length of Growing Season 
(LGS) 

186 187 186 0.4 B 173 195 185 5.5 BC 

Mean thermal amplitude 
(MTA) 

17.8 18.4 18.1 0.2 A 14.8 17.1 16.2 0.5 EFG 

Wind Speed Index (WS) 49 59 56 2.7 A 17 41 27 5.6 F 
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Appendix B:  American Viticultural Areas (AVAs) in Washington and Oregon and various 
key bio-climatic indices computed over a 30-year period (1983-2012). 

Bio-climatic Indices Walla Walla Yakima Valley 

Min. Max. Mean ±SD Group 
letter 

Min. Max. Mean ±SD Group 
letter 

Biologically Effective 
Degree Days (BEDD) 183 510 346 73.0 FG 212 456 331 37.9 B 

Cold Damage Index 
(Five-years) 1 40 7 3.8 F 2 36 11 5.6 D 

Cold Damage Index (10-
years) 1 65 9 5.3 F 3 60 17 8.8 D 

Cold Damage Index (20-
years) 1 105 13 8.4 B 7 110 33 16.2 D 

Cold Damage Index  (30-
years) 2 140 16 10.4 I 8 152 46 25.0 D 

Cool Night Index (CI) 6.6 11.2 9.5 0.8 C 6.5 10.3 8.6 0.7 F 
Dynamic Minimum 
Temperature  10 49 15 3.1 J 16 44 26 5.2 E 

Frost Free Days (FFD) 144 212 189 11.3 C 140 186 164 8.6 I 
Growing Degree Days 
(GDD) 909 1703 1566 95.4 C 1025 1684 1488 136.1 E 

Growing Season 
Precipitation ( GSP) 74.0 288.5 111.5 27.9 C 50.2 155.6 63.1 11.9 FG 

Out of Growing Season 
Precipitation (Out-GSP) 129.4 417.9 197.3 39.2 B 67.8 125.9 86.8 11.0 G 

Growing Season 
Suitability (GSS) 0.73 0.93 0.91 0.0 C 0.78 0.93 0.89 0.0 E 

Growing Season 
Temperature (GST) 12.7 17.1 16.5 0.5 C 13.4 17.1 16.0 0.7 E 

Huglin Index (HI) 1506 2391 2274 109.9 E 1686 2480 2248 166.4 F 
Hydrothermic Index 
(HyI) 1400 3185 2050 305.4 B 714 1158 916 81.1 FG 

Latitude Temperature 
Index (LTI) 275 342 329 7.7 B 269 331 312 12.0 F 

Length of Growing 
Season (LGS) 143 190 184 4.9 C 154 189 179 7.1 E 

Mean thermal amplitude 
(MTA) 14.4 18.9 16.2 1.2 FHG 14.3 18.5 17.2 1.1 C 

Wind Speed Index (WS) 14 61 33 13.8 D 11 68 37 15.6 C 
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