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This research explores the factors that motivated increasing reliance on maize during the 

Basketmaker II period in the North American Southwest. Through the analysis of 44 human 

paleofeces from Turkey Pen Ruin, Utah, I investigate resource choice and nutritional 

supplementation of maize before the advent of bean horticulture. In order to discern what 

resources provided caloric and nutritional supplementation to maize, all paleofecal specimens 

were analyzed for pollen and macrofossil content, and 20 were further sampled for PCR analysis 

targeted at several select animal and plant species. Eight paleofecal specimens from various 

stratigraphic layers were directly AMS dated in order to better assess the chronology of the 

midden from which they were excavated, and to determine their cultural phase association. The 

resulting data allowed for the testing of three hypotheses based in human behavioral ecology, 

specifically applying diet-breadth and patch-choice models.  

The results of this project demonstrate that the diet of these early maize farmers was 

relatively broad, and included a high proportion of resources with lower caloric returns than 

maize. Furthermore, plants associated with field and disturbance settings, such as goosefoot 

(Chenopodium spp.) and purslane (Portulaca spp.), which provide excellent nutritional 

complements to maize, made large contributions to the diet. Overall, these findings indicate that 
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people were pushed to increase their reliance on farming due to resource depression, and that the 

anthropogenic niche created by farming activities encouraged greater focus on the field as a 

patch of multiple types of resources, and not only as a location for growing maize. The discovery 

of corn smut (Ustilago maydis) spores in all but one of the specimens studied suggest that this 

parasitic fungus may also have made a noteworthy contribution to the diet, further supporting the 

emphasis on the field as a patch. In combination, these data and theoretical analyses help to 

explain the subsistence choices made by Basketmaker II people. In particular, these results 

clarify what motivated people to increasingly focus on farming, and highlight the wild resources 

used to augment maize-based nutrition prior to the incorporation of beans, which provided 

essential nutrients during later periods.  



 

viii 
 

TABLE OF CONTENTS 

LIST OF FIGURES xii 

LIST OF TABLES xiii 

LIST AND DESCRIPTIONS OF APPENDICES xv 

CHAPTER 1 1 

Data and Context 2 

Approach 3 

CHAPTER 2 5 

Theoretical Contexts: Conventional and Recent Explanations for the Advent of Food 

Production 6 

Conventional Ideas 6 

A Different Approach to Agricultural Theory 11 

Human Behavioral Ecology and the Adoption of Food Production 19 

Human Behavioral Ecology 20 

Optimal Foraging Theory: Diet-Breadth and Patch-Choice Models 21 

Evolutionary Development and Niche Construction Theory 28 

Domestication as a Secondary Event 30 

Conclusion 33 

CHAPTER 3 34 

A Brief Culture History of the Northern Southwest 35 



 

ix 
 

Ancestral Pueblo 36 

Archaeological Chronologies 39 

Basketmaker II Subsistence and Culture 41 

The Adoption of Agriculture in the Southwest 41 

Basketmaker II Maize Dependence 43 

Site Description 48 

Environmental and Ecological Context 60 

Geography and Climate 60 

Ecology 62 

Conclusion 65 

CHAPTER 4 66 

Botanical Analyses 66 

Sample Selection and Preparation 66 

Pollen Processing and Analysis 68 

Ustilago maydis 72 

Caveats Regarding Dietary Pollen and Spores 73 

Macrobotanical Analysis 74 

Other Analyses 75 

DNA Analysis 75 

AMS Dating 78 



 

x 
 

Comparative Data 79 

Statistical Analyses 79 

Conclusion 81 

CHAPTER 5 82 

Why Mix Foraging and Farming? 84 

Corn Fungus 87 

Faunal Resources 89 

Hypothesis 1 – A Pull toward Food Production 91 

Hypothesis 2 – A Push toward Food Production 93 

Hypothesis 3 – The Field Patch 95 

Conclusion 101 

CHAPTER 6 103 

Palynological Results 103 

Counts and Percentages 103 

Pollen Densities 107 

Analysis 109 

Corn Fungus 112 

Analysis 114 

Macrofossil Results 114 

Analysis 118 



 

xi 
 

DNA Results 119 

Analysis 121 

Synthesis of the Data 122 

Ecological Patch Association 124 

AMS Dating Results 126 

Analysis 128 

Conclusion 129 

CHAPTER 7 131 

Hypothesis Testing 131 

Hypothesis 1 132 

Hypothesis 2 135 

Hypothesis 3 140 

Discussion and Conclusions 146 

BIBLIOGRAPHY 151 

 



 

xii 
 

LIST OF FIGURES 

 

Figure 3.1. Map of Cedar Mesa and Cedar Mesa Project area with color coding for elevation. 49 

Figure 3.2. Map showing location of Turkey Pen Ruin within upper Grand Gulch. 50 

Figure 3.3a. The rockshelter overhang. 51 

Figure 3.3b. Puebloan house structures with soot stains and BMII period rock art. 51 

Figure 3.3c. View from within Turkey Pen Ruin. 51 

Figure 3.4a. Rock art. 52 

Figure 3.4b. Axe grinding slicks from Turkey Pen Ruin. 52 

Figure 3.5. Partially isolated midden column. 54 

Figure 3.6. Turkey Pen Ruin midden profile with associated radiocarbon dates. 57 

Figure 3.7. Cedar Mesa Project sampling design. 61 

Figure 6.1. Pollen percentages for major taxa by sample. 106 

Figure 6.2. Bar chart of pollen density by sample. 107 

Figure 6.3. Results from Aasen 1984. 109 

Figure 6.4. Macrofossil percentages by sample. 117 

Figure 6.5. Images of the rodent humerus fragment, anterior view and posterior view. 118 

Figure 6.6. Midden profile with DirectAMS dates integrated. 128 

 

 



 

xiii 
 

LIST OF TABLES 

 

Table 3.1. Modern Pueblos in the Southwest 38 

Table 3.2. Chronology of the Puebloan Region of the Northern Southwest 39 

Table 4.1. PCR Primers and Associated Citations 76 

Table 4.2. Ecological Patches and Associated Plants 81 

Table 5.1. Selected Essential Nutrient Content for 100g Raw Corn with Corresponding EARs 85 

Table 5.2. Percentage of Essential Nutrients Compared to Raw Corn 87 

Table 5.3. Local Faunal Resources at Cedar Mesa and Their Caloric Return Rates 90 

Table 5.4a. Comparison of Caloric Return Rates for Selected Resources on the Colorado Plateau

 92 

Table 5.4b. Caloric Return Rates for Maize Farming 93 

Table 5.5. Plants Native to Cedar Mesa Commonly Associated with Field Settings 99 

Table 6.1. Combined Pollen Results Divided into Standard Taxonomic Groupings 104 

Table 6.2. Pollen Taxa Distributions between Samples 105 

Table 6.3.  Pollen Densities Ordered Lowest to Highest 108 

Table 6.4. Statistics on Pollen Density by Taxa 108 

Table 6.5. Calculated Corn Smut Densities for All Samples 113 

Table 6.6. Macrofossil Representation for All Specimens Combined 115 

Table 6.7. Statistics for Macrofossil Weight by Taxa for All Specimens 116 

Table 6.8. Combined Faunal and Plant DNA Results 121 



 

xiv 
 

Table 6.9. Pollen Representation by Ecological Zone 125 

Table 6.10. Macrofossil Representation by Ecological Zone 125 

Table 6.11. AMS Dates and Associations of Paleofecal Samples 127 

Table 7.1. Resource Use and Nutritional Expectations 132 

Table 7.2. High-Ranked Wild Resource Representation 133 

Table 7.3. Low-Ranked Wild Resource Representation 136 

Table. 7.4. Expectations of Resource Use and Nutrition for Hypothesis 3 141 

Table 7.5. Field Resource Representation 142 

 



 

xv 
 

LIST AND DESCRIPTIONS OF APPENDICES 

 

APPENDIX A – General Information on the Paleofecal Specimens 

Appendix A lists details about the paleofecal specimens including sample weights and 

solution Munsell colors, midden layer associations, and radiocarbon date associations.  

APPENDIX B – Pollen Data 

Appendix B shows the raw counts, densities, and percentages of pollen by taxa and sample. It 

also shows the results for corn smut spores. 

APPENDIX C – Macrofossil Data 

 Appendix C shows the macrofossil weights and percentages by sample. 

APPENDIX D – DNA Data 

Appendix D shows the results of the targeted PCR analyses and corresponding data regarding 

the primers. 

APPENDIX E – Use of Native Plants in the Southwest   

Appendix E lists, categorizes, and details ethnographically documented uses of various plant 

species among indigenous Southwestern groups.   

 



 

 
 

This work is dedicated to the Puebloan peoples whose ancestors are the subject of this study. 

 

 

 



 

1 
 

CHAPTER 1 

Project Overview 

 

Subsistence is widely acknowledged as an important foundation for many cultural traits; 

what people eat and how they obtain food influences their culture in profound ways. The 

development of farming during the Neolithic Revolution changed the course of human history, 

allowing for the rapid development of complex societies, large cities, and the accompanying 

technological advancements (Childe 1928; 1935). Most analysts now agree that regional and 

historical contingencies led to shifts in foraging productivity or population density that resulted 

in people choosing to produce food instead of relying exclusively on forage (Weisdorf 2005; 

Winterhalder and Kennett 2006). 

Specifically in the Southwest there has been much debate over whether maize agriculture 

spread primarily through cultural diffusion to local foragers or through migration of maize-

dependent farmers (Roth 2017). Although the data analyzed here cannot address this issue 

directly, by highlighting the scenarios that encouraged increased focus on food production and 

considering the complementary use of local forage, this work may have implications regarding 

these competing models of maize proliferation. Furthermore, in recent years, researchers have 

begun examining the adoption of maize in the Southwest from a perspective based in human 

behavioral ecology and cost-benefit analysis (Kennett and Winterhalder 2006; Phillips 2009). By 

examining the wild foods used to supplement the diet of an increasingly maize-reliant 

population, I aim to reveal the salient ecological circumstances that encouraged the shift to maize 
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reliance during the BMII period in the Four Corners of the Southwestern United States. The 

nutritional and caloric value of foraged resources relative to corn can help explain the role of 

farming in the overall subsistence strategy and what motivated its people to increase their 

reliance on maize—a pull toward raising subsistence efficiency, or a push to obtain enough 

calories and nutrients from a degraded environment. 

Data and Context 

Materials recovered from Turkey Pen Ruin, southeast Utah provide an ideal opportunity 

to examine questions about past human diets because it is a well-dated, dry rock shelter site with 

excellent organic preservation, including human paleofeces (Aasen 1984; Lipe et al. 2011; 

Matson 1991). This dissertation describes the pollen and macrobotanical evidence from 44 

human paleofeces from a single stratified midden at Turkey Pen Ruin. Twenty of these samples 

were also processed for animal and plant DNA to test for meat resources and plants unlikely to 

be represented in the macrobotanical and pollen data. To help clarify chronology, eight 

specimens from six different layers of the midden were submitted for AMS assay.  

The specimens analyzed in this dissertation are all ancestral Puebloan paleofeces from a 

stratified midden dating primarily to the late Basketmaker II period (ca. 90 BC – AD 400). The 

temporal context of Basketmaker II (hereafter BMII) is important because the people of this time 

period were the first in the northern Southwest to become reliant on maize farming (Coltrain et 

al. 2006; 2007; 2012; Lipe 1999b; Martin 1999; Matson 1991; 2006a, b; Matson and Chisholm 

2007). They were also the first to develop many of the cultural traits that would later come to 

define the region including turkey husbandry (Lipe et al. 2016; Nott 2010; Speller et al. 2010) 

and the architectural origins of the kiva (Lekson 1985; Matson 1991, 44; Morris and Burgh 

1954).  
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Turkey Pen Ruin exhibits the maize-centered farming economy characteristic of BMII. 

However, the combined absence of bean horticulture during this period (Geib and Spurr 2000; 

Lipe 1999b; Matson 2006b) and an apparent lack of meat consumption at this particular site 

(Aasen 1984; Cooper et al. 2016), begs the question of how the inhabitants were getting 

sufficient amounts of essential amino acids and what motivated them to focus so much of their 

energy on a crop deficient in several essential nutrients (Bressani et al. 1997; Ellwood et al. 

2013; Holstad 2010; Spielmann and Angstadt-Leto 1996). For these and other reasons Turkey 

Pen Ruin is an ideal site for studying the initial evolution of the Southwestern agricultural 

economy and the motivation to adopt maize horticulture in the larger culture area. 

Approach 

Using paleofecal analysis I hope to gain a better understanding of the dietary decisions 

prehistoric people made to meet their basic energetic and nutritional needs from farming and 

supplemental foraging. Through the application of models based in human behavioral ecology 

(HBE), one of the major questions I address is the underlying motivation of these choices. 

Specifically, if agriculture was a highly productive endeavor adopted and intensified out of 

preference, then foraged resources chosen to complement maize farming should be calorically 

superior to maize (Childe 1951; Meggers 1954; Pryor 1986). Alternatively, if people were 

pressured to increase their reliance on cultigens due to a reduction in foraging productivity 

(Barlow 2002; Lee and DeVore 1968), then they would need to supplement agriculture with 

inefficient resources that were calorically inferior to maize.  I use the diet-breadth model and 

caloric returns on local resources (calories gained per time spent obtaining and processing a 

resource) to evaluate resource choice and to understand what motivated BMII peoples to focus 

their subsistence strategy on farming.  
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I also use the patch choice model to evaluate the patches that farmers might have 

exploited. Because farming creates an artificial patch that can support certain wild plants 

alongside cultigens, patch choice can be applied to food production by looking at the field itself 

as a patch. The field patch is not only where crops are grown, but where weedy plants that thrive 

in disturbed contexts provide an additional benefit. The use of weedy disturbance plants as a 

resource has been investigated in similar contexts elsewhere (Bye 1981; Ford 1984; Kahl 1987; 

Stiger 1979). In this context they could provide an added incentive to expand farming pursuits. 

By comparing data from this project against pollen and macrobotanical data from Kate 

Aasen’s (1984) analysis of 28 separate paleofeces from this same site and temporal context, I 

hope to paint a more detailed picture of subsistence at Turkey Pen Ruin. By incorporating HBE-

based interpretations of paleodietary data, this dissertation will endeavor to explain what 

motivated some of the first farmers of the ancient Southwest to center their economy on maize 

(Zea mays). 
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CHAPTER 2 

Theoretical Background 

“Why should I farm when there are so many Mongongo nuts?” – Bushman of The Kalahari as 

quoted in Lee and DeVore (1968)

This chapter provides a larger historical context and a theoretical framework for my 

hypotheses regarding food production during the Basketmaker II period in the northern 

Southwest. This discussion is centered against a backdrop of conflicting classical and modern 

assumptions about the relative efficiency of foraging and farming. Beginning with Childe’s 

Oasis Theory, I will map out the major transitions in theoretical understandings of the 

agricultural revolution through the 20th Century, and end with an explanation of modern ideas 

such as niche construction and other models based in evolutionary theory. A major portion of 

this chapter reviews the application of human behavioral ecology to studies of food production, 

with particular focus on diet-breadth and patch-choice models—the theoretical models used in 

this dissertation. Finally, since Basketmaker II peoples were maize farmers who adopted their 

staple crop after it was domesticated in Mesoamerica, this chapter also includes a discussion on 

the spread of farming from primary to secondary centers. 
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Theoretical Contexts: Conventional and Recent Explanations for the Advent of Food 
Production  

Conventional Ideas 

Conventional models, especially those developed prior to the late 1960s, have often 

portrayed the adoption of food production as part of humankind’s natural progression, limited 

only by the environmental, technological, and demographic potential for agricultural 

development (Childe 1951; Flannery 1969; 1973; 1976; Meggers 1954; White 1949; 1959). 

Agriculture was viewed as the high point in human civilization and as naturally superior to 

foraging. Conventional approaches often operated under the assumption that high agricultural 

returns juxtaposed against less productive and undependable foraged resources led to the 

adoption of domesticated foods—basically a pull toward increased bounty and stability (Meggers 

1954; Pryor 1986). For some of these researchers, the central question was not what caused 

societies to adopt agriculture, but rather what factor or factors prevented other societies from 

embracing food production (Meggers 1954; Pryor 1986).  

One of the first theoretical attempts to tackle the advent of agriculture was the Oasis 

Theory proposed by V. Gordon Childe (1928; 1934; 1951). Childe believed (correctly) that the 

Near East was where the first experiments in food production took place. By compiling and 

chronologically sorting archaeological data from that region, he created a theoretical framework 

that included several technological stages of resource acquisition and settlement that evolved 

from a foraging economy, into the Neolithic, and eventually to urbanized civilization (Childe 

1928; 1951; Flannery 1994). Childe’s explanations for the adoption of agriculture were not 

universal, nor did he intend them to be (Flannery 1994). His Oasis Theory was based on the 

particular ecology and environment of the region; Childe argued that shifting rain patterns during 
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the terminal Pleistocene had a destabilizing effect on the Near East. Although the larger 

environmental shifts were gradual, they rapidly changed the Near East from a productive region 

of more or less continuous grasslands, to a harsh desert with shrinking, scattered oases (Childe 

1928; 1934; 1951). Childe proposed that warm, arid conditions in the terminal Pleistocene forced 

people and animals to gather in the limited places where water and plants were plentiful. This 

unavoidable congregation led to a shift in the way that people foraged; instead of simply 

searching out favored foods, they began to selectively breed and manage first plants, then 

animals. He further argued that the process of food production motivated cultivators to 

accumulate a surplus of stored food and seeds to replant. Sedentism and social stratification 

evolved out of this shift to economic dependence on food stores and thus began the Neolithic 

Revolution (Childe 1928; 1934; 1951).  

Childe and his contemporaries viewed this shift as a swift and unambiguous leap forward. 

Like previous ideas about agriculture (e.g., Hobbes 1651) and like many of the theoretical 

models to follow (Braidwood 1963; Braidwood and Howe 1960; Flannery 1969; 1973; 1976; 

Meggers 1954), Childe’s theory was couched in the assumption that people adopted agriculture 

because it was superior to foraging in terms of efficiency and as an overall lifestyle choice. 

Characteristic of his Marxist theoretical bent, Childe considered hunter-gatherers to be savages, 

living difficult, brutish lives, dependent on their environment instead of conquering and 

manipulating it (Childe 1951; Flannery 1994). Sedentism was clearly superior to mobility, and 

farming was considered more stable and productive than foraging, so farming was motivated by 

a desire to increase the food supply with less relative effort. The invention of food production 

was therefore unquestioned progress toward humankind’s greater dominion over nature (Childe 

1951; Flannery 1994).  
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Paradoxically, Oasis Theory was considered too environmentally determinist by later 

scholars, since it was rooted in rapid climatic change. This consideration led many researchers to 

deemphasize the importance of climate change as a possible catalyst for food production for 

decades following (Braidwood and Howe 1960; Weisdorf 2005; Winterhalder and Kennett 

2006). Furthermore, by the 1940s and 50s, geological and paleobotanical analyses, in 

conjunction with radiocarbon dating, demonstrated a gradual, less-encompassing climatic shift at 

the end of the Pleistocene that could not have led to the sudden desiccation essential to Childe’s 

Oasis Theory (Braidwood 1963; Braidwood and Howe 1960; Helbaek 1960; Weisdorf 2005; 

Wright 1960).  

Although they intended to find supporting evidence for Childe’s model, much of the 

work that undermined Oasis Theory was conducted by Robert Braidwood and colleagues as part 

of the Iraq-Jarmo Project (Braidwood 1963; Braidwood and Howe 1960). Built upon years of 

multidisciplinary research in the Levant, Braidwood et al. developed the Hilly Flanks Theory, 

which soon gained prominence as a model for domestication (Braidwood 1963; Braidwood and 

Howe 1960). Braidwood agreed with Childe that the Near East was the region where agriculture 

originated and that it was economically superior to hunting and gathering, but disagreed on how 

and why this shift in subsistence practices took place. While Braidwood and his colleagues 

developed their model using culture history like Childe, Hilly Flanks Theory was also firmly 

grounded in paleobotanical, geological, and ecological data on the natural borders of vegetation 

zones.  

As in the American Southwest, vegetation regimes, soil types, and precipitation in the 

Near East are strongly segregated along elevational lines (Braidwood and Howe 1960). 

Braidwood and colleagues determined that grasslands in the foothills and intermontane valleys of 



 

9 
 

the Fertile Crescent, between approximately 455 and 915 meters above sea level, were an ideal 

setting for prehistoric experiments in cultivation (Braidwood 1963; Braidwood and Howe 1960). 

According to Hilly Flanks Theory, the domestication of wheat and barley evolved from 

intensification of foraging practices and technology in areas that were rich in wild grasses. The 

first cultivators likely started with wheat and then moved on to cultivate barley; other cultigens 

and animal husbandry soon followed (Braidwood 1963; Braidwood and Howe 1960; Helbaek 

1960). Eventually, people began replanting crops in river valleys where village-farming 

communities could practice irrigation and more intensive forms of agriculture that were not 

possible with incipient horticulture where these early cultigens naturally grew (Braidwood and 

Howe 1960). Braidwood’s theory was also region specific, largely centered on the Fertile 

Crescent’s natural abundances of plants and animals amenable to domestication, but it placed a 

greater focus on human ingenuity than Childe’s Oasis Theory.  

Subsequent ideas such as Lewis Binford’s Equilibrium Model (1968) and Kent 

Flannery’s Broad Spectrum Revolution (1969) focused on explaining the Neolithic Revolution in 

terms of population pressure in marginal landscapes. Binford (1968) argued that Braidwood’s 

Hilly Flanks Theory lacked explanatory power and offered no justification for why people with a 

successful economy would intensify foraging efforts and experiment with cultivation in a highly 

productive environment. Binford proposed that rising sea levels encroached on occupied 

territories and forced foraging populations into smaller, more marginal areas with shifting 

seasonal productivity (Binford 1968). This climate-driven circumscription increased sedentism 

and population packing in places where the precursors to modern cultigens naturally thrived. 

Increases in sedentism fueled population growth through shortened interbirth intervals because 

mothers’ burdens were decreased when dependent children did not have to be transported. Once 
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population density grew to levels out of equilibrium with the surrounding resources, 

technological shifts toward food production provided a means to correct that disequilibrium. 

However, there is no archaeological evidence that supports the rising sea level that led to this 

population packing, as envisioned by Binford (Cohen 1977).  

Flannery’s (1969) Broad Spectrum Revolution, on the other hand, relied completely on 

population pressure as a catalyst for food production. Flannery argued that Late Paleolithic 

population growth in areas with abundant resources pushed daughter populations into more 

marginal areas. While earlier Paleolithic peoples focused their foraging efforts on a small 

selection of highly productive resources, populations in marginal areas were forced to increase 

their diet breadth and adapt their subsistence technology to include resources such as 

invertebrates, fish, waterfowl, and seed-based plant resources (Flannery 1969). As with Binford, 

Flannery thought the balance between environmental productivity and population size was key to 

explaining the expansion of diet and the advent of new subsistence technologies. People residing 

in areas with lower natural productivity had to find a way to increase food acquisition. Based on 

the observation that a focus on small-package resources and the associated tool kits often appear 

in the record just before food production, Flannery argued that this increase in resource 

acquisition was initially accomplished through exploiting a wider range of wild resources.  

A central idea behind the Broad Spectrum Revolution is that people increased their diet 

breadth to include smaller resource packages, such as invertebrates and grass seeds, when more 

preferred resource availability decreased. Eventually, these adaptations paved the way for food 

production, which became the favored method of increasing territorial carrying capacity 

(Flannery 1969). Since the majority of protein still came from ungulates, presumably hunted by 

men, he argued that cultivation fell under the purview of women so it would not interfere with 
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game acquisition. This new economic system centered on cultivated resources was more 

successful than economies based solely on foraging, so it soon spread from the marginal 

environments where it originated to areas with greater resource availability (Flannery 1969).  

However, more recent work by Stiner and colleagues (2000) found that 

zooarchaeological data in the Near East and Mediterranean do not necessarily support a 

straightforward transition to increased use of small prey in the Late Paleolithic, rather they show 

a transition in the variety and types of small prey captured. Specifically, the major shift noted 

was from exclusive use of sessile, littoral prey such as mollusks and limpets, to a greater 

incorporation of birds and lagomorphs (taxa that are more difficult to catch, but replenish 

quickly). This is a departure from the traditional foraging theory models (MacArthur and Pianka 

1966; Odum and Odum 1959) and instead shows that resource diversification associated with the 

broad spectrum revolution may have meant greater inclusion of small animal resources that are 

less likely to become depressed by overexploitation. These findings do not conflict with Binford 

and Flannery’s ideas about resource diversification prior to the adoption of agriculture, but show 

that expansion of resource use may have been more skewed toward employing new methods and 

including more sustainable faunal resources to support densely packed, less-mobile populations 

(Stiner et al. 2000). 

A Different Approach to Agricultural Theory 

For many years assumptions about the superiority of agriculture went largely 

unchallenged (Cohen 1977; Harlan 1995; Weisdorf 2005). Then, in the 1960s and 70s, 

theoretical work by Ester Boserup (1965) and Marshall Sahlins (1972), ethnographic descriptions 

by Richard B. Lee and Irven DeVore (1968), and experimental work by agronomist and plant 
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biologist Jack Harlan (1976, 1992) and others sparked a multidisciplinary debate regarding the 

economic lives of hunter-gatherers.  

Ester Boserup (1965) approached the issue of food production from an economic 

perspective, but one that challenged the Malthusian views of resource-limited population growth 

established in the late 1700s. She stated that population growth (particularly increasing density) 

was the trigger for both food production and intensification of agriculture. According to Boserup, 

people adopted agriculture and increased production to meet the rising demands of populations 

growing beyond their natural environmental carrying capacity, turning Malthus’ model on its 

head. However, she also asserted that rates of return (energy per unit time) diminished with 

increasing energy expenditures, so that farming—particularly intensified agriculture—was less 

efficient than simple foraging (Boserup 1965). Jack Harlan also argued that farming was harder 

work and that it produced a less nutritious and less stable food supply, a contention he supported 

through ethnographic evidence and experimentation (Harlan 1976; 1992; 1995). He stated that 

agricultural economies were more prone to famine and less equipped to deal with food shortages. 

Conversely, through harvesting experiments, Harlan (1976; 1992; 1995) found that it was 

possible to harvest enough wild seed crops in a very short period of time to sustain a family for 

an entire year. Under such circumstances agriculture should only be adopted out of necessity—a 

push toward food production.  

A pivotal point in this debate was the 1966 “Man the Hunter” symposium, from which 

the 1968 edited volume of the same name was derived. In particular, ethnographic analysis of the 

!Kung San, presented at this symposium by Richard B. Lee, challenged traditional ideas about 

the hardships faced by hunter-gatherers and showed that people could get all that they needed 

from relatively little foraging effort. Even in an environment as harsh as the Kalahari Desert, Lee 
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found that foragers could collect enough mongongo nuts in 15 to 19 hours per week to meet their 

subsistence needs (Lee and DeVore 1968). Based on findings by Lee and others, Marshall 

Sahlins (1972) argued that the hunter-gatherer lifestyle was one of relative affluence. He stated 

that foraging societies desired fewer material goods, were able to maintain egalitarian relations, 

and by virtue of not wanting for much were the “original affluent society.” In Sahlins view, 

foraging populations did not have to hoard goods or strive for material possessions, and could get 

all they needed from their environment with less effort than a sedentary food producer who 

required more advanced tools and wealth accumulation (Sahlins 1972). Although later 

researchers demonstrated that the !Kung and other foragers worked longer hours than Lee and 

DeVore initially calculated (Hawkes and O’Connell 1981; Kaplan 2000). Cumulatively, these 

studies led to a paradigmatic change that viewed agriculture as an expensive strategy in 

comparison to hunting and gathering (Barlow 2002; 2006; Kaplan 2000; Phillips 2009; Weisdorf 

2004; 2005).  

In this view, farming is time-consuming and difficult, and dependency on domesticated 

foods has extended consequences for human demography, health, the division of labor and 

sociocultural organization (Harlan 1976; 1992; 1995; Lee and DeVore 1968; Sahlins 1972; 

Weisdorf 2005). More intensive food production strategies that implement water control devices, 

terraced fields, and other high-cost technologies are even more inefficient in comparison to 

simpler forms of food production (Barlow 2002; 2006; Boserup 1965; Phillips 2009). Under 

these circumstances, food production should only be adopted under environmental or historical 

circumstances that shift the equilibrium between the population and their resources. Such a push 

can result from long-term resource depression (reduced resource encounter rates) from climatic 
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shifts or increased population density (Barlow 2002; 2006; Boserup 1965; Cohen 1977; Phillips 

2009; Wills 1988).   

Mark Cohen was among the first archaeologists to take the position that foraging was 

superior to agriculture. Cohen asked why anyone would choose food production over foraging, if 

the latter required much less effort than agriculture (Harlan 1995; Weisdorf 2005). Inspired by 

Ester Boserup’s (1965) argument, Cohen (1977) argued that population growth was the driving 

force behind the adoption of food production. At a time when an estimated one third of the world 

suffered from hunger, the claim that intensified agriculture was the most efficient economic 

system seemed flawed to Cohen. Informed by ethnographic accounts of the !Kung from Lee and 

DeVore (1968) and the economic ideas of Boserup (1965) and Sahlins (1972), Cohen claimed 

that the lives of hunter-gatherers were not as difficult as they had been portrayed, and that their 

diet and lifestyles were in many ways superior to that of agricultural populations. He argued that 

agriculture and food production were high-cost activities that resulted in a loss of nutritional 

diversity, so hunter-gatherers should only attempt food production if the needs of their 

population had exceeded environmental carrying capacity (Cohen 1977).  

Unlike the archaeological theories described above, Cohen’s theory was not region-

specific, but was intended to explain a global subsistence transition. His overarching goal was to 

answer why such a large percentage of the world’s people transitioned to agricultural economies 

in a relatively short amount of time (a few thousand years). He proposed that a major switch 

from a subsistence strategy that was successful for tens of thousands of years must have arisen 

from a shift in selective pressures. Cohen’s research at archaeological sites in coastal Peru 

showed a decrease in preferred resources over time, and eventual replacement of those foods by 

suboptimal resources collected from more distant locations leading up to the agricultural period 
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(Cohen 1977). According to Cohen, human populations had grown steadily for thousands of 

years until favorable regions became overcrowded, pushing people to occupy less favorable 

areas with lower carrying capacities requiring the adoption of farming. Furthermore, densely-

populated, sedentary occupations have a greater environmental impact and require more 

resources per unit of land than small settlements, leading people to intensify production via 

advanced irrigation and larger scale farming than possible for small populations (Cohen 1977).  

Cohen was not the first to consider the influence of human populations on the terminal 

Pleistocene environment and its importance to the eventual adoption of agriculture. Paul 

Martin’s ideas about the megafaunal extinction of the late Pleistocene also hinged on population 

growth. If the megafauna were rapidly hunted to extinction as proposed by Martin’s (1973) 

blitzkrieg model, then people experienced population expansion that simultaneously caused the 

loss of a valuable food source. Thus, the megafaunal extinction resulting from demographic 

pressure may have ultimately been a causal factor in the adoption of agriculture (Martin 1967; 

Roberts 1989; Smith 1975).  

Building on the work of Paul Martin (1967; 1973), Vernon Smith (1975) noted that the 

megafaunal extinction coincided with the adoption of small-sized animal and plant resources that 

were precursors to cultivation. However, regardless of whether humans, climate, or some 

combination thereof caused megafaunal extinctions (Grayson 1984a, b; Grayson and Meltzer 

2003; Smith 1975), the rise and spread of food production often does not spatially or temporally 

align with these events (Weisdorf 2005). For example, in North America megafaunal extinctions 

took place thousands of years prior to the advent and adoption of food production and extinctions 

in Australia never resulted in the adoption of food production.  
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During the 1980s models based on population pressure were more critically examined. 

Kent Flannery’s (1986) work at Guilá Naquitz Cave in Oaxaca helped to disprove population 

pressure as a universal cause in sparking the advent of farming. Although this site boasts the 

earliest domesticated maize macrofossils yet discovered, Flannery’s data showed that 

populations did not significantly increase prior to the advent of food production in Mesoamerica. 

Other attempts to support population pressure as the driving force for the advent of 

domestication also returned little supporting evidence. For instance, Cohen and Armelagos 

(1984) organized a large-scale study of skeletal remains from late Paleolithic and early Neolithic 

sites from around the world to test the idea that nutritional stress among foraging populations 

catalyzed the advent of agriculture. They hypothesized that skeletal markers of malnutrition 

combined with changes in isotopic dietary signals in foraging populations prior to the Neolithic 

would provide support for an imbalance between population and environmental carrying 

capacity. However, the Late Paleolithic (Epipaleolithic) skeletal remains in their sample did not 

exhibit signs of regular food stress. Contrary to expectations, Neolithic peoples were much less 

healthy than their Late Paleolithic counterparts. Neolithic skeletons commonly exhibited signs of 

anemia (i.e., cribra orbitalia and porotic hyperostosis), as well as enamel hypoplasia and Harris 

lines, indicating stress-related pauses in tooth and bone growth, and signs of infectious disease 

proliferated by increasing sedentism (Cohen and Armelagos 1984; Harlan 1995). These data 

offer support for Cohen’s stance regarding agricultural inefficiency, but do not support resource 

stress from population pressure as an a priori condition to its adoption. Although, the 

archaeological record often shows increasing population densities associated with the emergence 

of farming, food production could be the cause instead of the result of this population increase, 
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so the issue of which came first—population growth or food production—remains unresolved 

(Weisdorf 2005).  

Eventually, researchers began to move away from population pressure and other single-

causal models to explain the advent and adoption of food production (Weisdorf 2005). Instead of 

dichotomizing foraging and farming, theorists began to consider common threads that might link 

both modes of subsistence and explain how cultivation evolved out of foraging (e.g., Harris 

1989; Rindos 1984). David Rindos (1980; 1984) argued that coevolution between plants and 

humans resulted in a symbiosis by which plants were propagated and protected from competitors 

while people secured a preferred food supply. Prior to the advent of agriculture, intensive 

foraging altered plant genetics and distribution, which in turn influenced foraging strategies. The 

changes caused to plants by intensified foraging eventually resulted in complete domestication, 

so that domestication itself triggered the adoption of farming when the symbiotic relationship 

between people and certain plants became so strong that some species could no longer propagate 

without human assistance (Rindos 1980; 1984). Rindos (1980; 1984) ignored questions of 

motivation as “unnecessary to the model” in favor of a more parsimonious, coevolutionary 

approach to food production research.  

 David Harris’ (1989) model is similar, but he posits domestication evolved out of the 

landscape-management activities of foragers such as land clearance and burning regimes. In 

Harris’ explanation intensification of foraging efforts and horticulture arose through natural 

selection due to a positive correlation between labor input per unit of land and the caloric output 

received (Harris 1989). In other words, when people intensified their foraging efforts and 

eventually began cultivating, their evolutionary fitness increased with the greater availability of 

food, and with each shift toward greater intensification evolutionary fitness benefited, which is in 
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some ways counter to Boserup and other modern ideas regarding subsistence economics. What 

differentiated these ideas from earlier theoretical concepts, however, was the lack of attention 

paid to intentionality and the emphasis on symbiosis between plants (and animals) and the people 

domesticating them.  

 In the early 1990s, Brian Hayden (1990; 1992) adopted a more anthropocentric 

perspective on the adoption of agriculture. He proposed that ambitious individuals within 

complex hunter-gatherer groups chose food production as a means of displaying wealth and 

power through extravagant feasting. Competitive feasting is ethnographically documented 

among complex hunter-gatherers (e.g., the Tlingit and Coast Salish) and horticultural groups 

(e.g. the Kawelka), as a means of displaying power (Hayden and Villeneuve 2011). Hayden 

argued that competition for status in the Mesolithic Near East within Natufian society inspired 

ambitious individuals to begin producing a surplus, rather than collecting food to meet their 

subsistence needs, sensu stricto (Hayden 1990; 1992). This type of competition is impossible 

among simple foragers who would have to transport extra food over great distances, and who 

often rely on resources like large game that do not quickly replenish, so that taking a surplus 

could cause resource depression. After Archaic and Mesolithic populations developed the 

technology to exploit smaller, rapidly reproducing animals, as well as common grasses and seed-

producing annuals, competition and wealth accumulation became tenable. According to 

Hayden’s competitive-status-based hypothesis, aspects of Natufian social complexity combined 

with the ecological productivity of the Levant provided all of the necessary prerequisites for food 

production to emerge. Ofer Bar-Yosef (1998) also remarked that the particularities of Natufian 

culture such as the focus on cereals, grinding tools, and the variety of mobility patterns were 

paramount to the development of food production, but tempered his interpretations with 
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emphasis on ecological and climatic contexts. Among these he identified the reduction in rainfall 

associated with the Younger Dryas (ca. 11-10kya) as a catalyst for the first experiments in 

cultivation among the Natufian who became sedentary in response to this shift. Such 

explanations harken back to Binford (1968), but with improved understanding of the 

paleoclimatic data and a greater focus on the cultural peculiarities of the region.   

Human Behavioral Ecology and the Adoption of Food Production  

Recent investigations into food production have increasingly borrowed from efficiency-

based foraging models. The suite of models and theories known collectively as human behavioral 

ecology (HBE) are central to many investigations into both the initial adoption and eventual 

spread of agriculture (Barlow 2002; 2006; Diehl 1997; Gremillion 2004; Gremillion and Piperno 

2009; Kennett and Winterhalder 2006; Philips 2009; Piperno 2006; Winterhalder and Goland 

1997; Zeder 2006). Since HBE is not couched in an assumption of inherent superiority of either 

food production or foraging, proximate explanations for the advent of food production are 

contextually-specific (e.g., climatic shifts, increased population packing, or resource depression), 

but do not preclude potential ultimate causes (such as a need to increase environmental carrying 

capacity) that may be more universal. For instance, in one region farming may be adopted 

following a decrease in local environmental production due to temperature decrease, whereas in 

another, an increase in population density may force groups into smaller territories; both of these 

proximate cause scenarios ultimately mean that people need to increase their territorial carrying 

capacity. Another major advantage is that some of the models, such as optimality models, can 

explain the adoption of different types of food production in various environmental and historical 

contexts by modeling local resource return rates and considering marginal returns (long-term 

payoffs) on agricultural investments relative to immediate returns from resources specific to that 
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region and time period. Furthermore, HBE offers a theoretical framework that can incorporate 

environmental factors without ignoring human ingenuity or choice in subsistence practices 

(Gremillion and Piperno 2009; Kennett and Winterhalder 2006).  

Human Behavioral Ecology 

Human behavioral ecology (HBE) is the study of behavioral and cultural diversity from a 

neo-Darwinian perspective. As such, HBE fosters interpretations of various human behaviors 

without precluding environmental, demographic, or social triggers and explanations, since social 

factors can exert selective pressures that are just as influential as those derived strictly from the 

physical environment (Bird and O’Connell 2006; Galef and Giraldeau 2001; Sterck et al. 1997). 

Although HBE encompasses a variety of models with differing degrees of complexity, at their 

core, all of these models rely on several underlying assumptions derived from evolutionary 

theory. HBE models are couched in the Darwinian principle that traits that increase fitness 

accumulate in populations and those that negatively impact fitness are selected against 

(Broughton and O’Connell 1999; Krebs and Davies 1987; West and Burton-Chellew 2013). 

Within any population, limited access to resources such as food and mates creates competition, 

and individuals who possess traits that render them more successful in that competition will be 

more likely to pass on their genes (and therefore those advantageous genetic traits) to the next 

generation (Darwin 1859; Pianka 2011). HBE specifically analyzes behavior, and so inherently 

operates under the assumption that behavioral traits, particularly via social learning mechanisms, 

can be influenced by genetics and are therefore subject to natural selective processes (Boyd and 

Richerson 1985). 

According to HBE, individuals are strategists who attempt to maximize their own returns 

of a given payoff for time and effort, and when these attempts are effective they can positively 
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impact evolutionary fitness (Broughton and O’Connell 1999; Charnov and Orians 1973; Emlen 

1966; Krebs and Davies 1987; Lupo 2007; Stephens and Krebs 1986; Winterhalder and Smith 

2000). Here, evolutionary fitness refers to overall mating success in conjunction with long-term 

offspring survival and offspring mating success. It should be noted that the effects of 

advantageous traits can manifest in a number of ways, such as an influence on the likelihood of 

mating, offspring survival, personal survival, and increased health, all of which can ultimately 

impact evolutionary fitness. In light of this, HBE attempts to explain various behavioral 

strategies by applying predictive mathematical models to test the fitness-related benefits of a 

behavior within a given set of ecological and/or sociobiological parameters (Broughton and 

O’Connell 1999; Krebs and Davies 1987; Lupo 2007; Stephens and Krebs 1986; Winterhalder 

and Smith 2000). 

Optimal Foraging Theory: Diet-Breadth and Patch-Choice Models 

HBE encompasses many diverse models. Here I focus on the two applied in this 

dissertation: diet-breadth and patch-choice models. Principles from both of these models have 

already been effectively applied to answering questions about maize agriculture (Barlow 2002; 

2006; Diehl 1997; Gremillion and Piperno 2009; Phillips 2009) in different contexts. Diet-

breadth and patch-choice are both considered optimality models—part of a larger group of 

quantitative models known as optimal foraging theory (OFT). OFT is specifically focused on 

addressing resource selection, time and spatial allocation, and other aspects of foraging strategies 

(Smith 1983; Winterhalder and Smith 2000, 54). Importantly, optimality does not necessarily 

include the most optimal behavior imaginable, but refers instead to the most relatively optimal 

strategy or behavior under a particular set of environmental parameters (Broughton and 

O’Connell 1999, 154). In light of this, hypothesis testing in OFT generally includes an 
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assessment of the alternative choices or strategies possible within the relevant constraints 

(Broughton and O’Connell 1999; Charnov and Orians 1973; Lupo 2007; Smith 1983; 

Winterhalder 1981; Winterhalder and Smith 2000). OFT operates under the assumptions that 

people make dietary choices to maximize subsistence efficiency, and that the effectiveness of 

these choices correlates with evolutionary fitness (Charnov and Orians 1973; Emlen 1966; Smith 

1983). 

OFT models, like HBE more broadly, often center on cost-benefit analyses. Within OFT, 

cost-benefit analysis is based on the relative ranks of different resources and it determines which 

resources should be pursued under different circumstances. Costs are partitioned into two 

categories: search and handling. Handling costs considers the time spent pursuing, harvesting or 

killing, transporting, and processing a resource against the value of a particular resource. Search 

time is generalized across all resources (Winterhalder 1981). In the diet-breadth model resources 

are ranked along a single continuum usually according to average caloric efficiency 

(energy/handling time the so-called post-encounter return rate). There are several factors that can 

alter a resource’s ranking such as technological advancements that decrease processing times or 

changes in resource density (Barlow 2006; Kennett and Winterhalder 2006; Lupo 2007, 148). 

For instance, small invertebrates in large, easily exploitable patches that can be mass-harvested 

(such as a swarm of locusts), are more energetically efficient resources than larger-sized game 

due to density and ease of access. However, energy is not the only possible currency, sometimes 

other specific nutrients are more important than caloric intake alone. In these instances, cost-

benefit analysis may still consider the need to obtain enough calories, but will center on another 

factor such as balancing protein and carbohydrate intake or obtaining an adequate amount of 

calcium (Jensen et al. 2012; Kay 2002; Simpson et al. 2004; Winterhalder 1981).  
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According to diet-breadth model, availability of high-ranked, productive resources 

influences whether or not lower ranked resources enter the diet (MacArthur and Pianka 1966; 

Charnov and Orians 1973; Hames and Vickers 1982; Stephens and Krebs 1986; Hawkes and 

O’Connell 1992; Kaplan and Hill 1992; Nagaoka 2002a, b; Lupo 2007; Gremillion and Piperno 

2009). If high ranking resources are readily available, the diet will be narrow as low ranking 

resources that would diminish the average rate of returns will not be pursued. In this case it is 

more efficient to ignore certain resources if the forager is likely to encounter an item with a 

higher post-encounter return rate (Stephens and Krebs 1986). In this case, the mean post-

encounter return rate (including unsuccessful pursuits) of the specific resource encountered is 

weighed against the average expected return rate of continued search for a higher ranking prey 

item (Stephens and Krebs 1986). When the average rate of returns diminishes due to a decrease 

in access to high-ranked resources (regardless of the reason) lower ranked resources will enter 

the diet, increasing diet breadth. Resources are added to and dropped from the diet in rank order, 

so that the lowest ranked resources will be dropped from the diet first and relatively higher 

ranked resources will be the first to enter back into the diet. In theory, foragers add resources into 

the diet until the average return rate (the average rate of energetic returns per time spent 

foraging) begins to diminish (MacArthur and Pianka 1966; Stephens and Krebs 1986; Charnov 

and Orians 1973; Hames and Vickers 1982; Hawkes and O’Connell 1992; Kaplan and Hill 1992; 

Lupo 2007; Gremillion and Piperno 2009).  

One weaknesses of this model is that variation in long-term return rates and marginal 

values on investments such as technology are ignored because explicit assumptions center on 

immediate average return rates (Gremillion and Piperno 2009). This can diminish its capacity to 

predict the adoption of economic strategies such as food production and those that focus on 
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sustainable resources that can quickly replenish weighted against resources that are more readily 

depleted (Gremillion and Piperno 2009). In spite of these predictive weaknesses, this model can 

still be effectively applied toward food production and farming economies (Hawkes and 

O’Connell 1992, 63). If agriculture is a highly productive endeavor (Childe 1951; Meggers 1954; 

Flannery 1969), then the diet breadth of a farming population should be narrowly focused on 

high-ranked domesticated food products with little need to add wild resources. If, on the other 

hand, food production is costly and inefficient as proposed by Boserup (1965) and others then 

the diet of farming populations should be broad and include wild low-ranking resources to help 

supplement the farming-based food supply. 

Patch-choice is a more spatially focused model, based on the idea that environments are 

rarely homogenous and resources are not randomly encountered. Certain resources often occur in 

specific patches so that once an animal or plant is encountered there’s an increased the likelihood 

of encountering that resource again (Charnov 1976). Patches can be coarsely defined as entire 

habitats (e.g., terrestrial vs. marine), as environments within larger settings (grassland, lacustrine, 

etc.), or as a specific resource or even the means used to obtain that resource (e.g., net or spear 

hunting) (Smith 1991; Nagaoka 2002a, b; Burger et al. 2005; Lupo 2007, 149-150). For example, 

economically important wild plant species often grow in particular settings, allowing for more 

fine-grained patch designations such as field or disturbed settings and pinyon-juniper woodlands.  

Patch-choice model, in conjunction with marginal value theorem, predicts when foragers 

will abandon one patch and move to another. If foraging depletes the patch, foragers will move 

to a new patch after the net return rate of the patch they currently occupy falls below the average 

for all other patches in the environment, taking into account travel time (Charnov and Orians 
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1973; Charnov 1976; Charnov et al. 1976). Reduction in overall foraging efficiency leads either 

to more intensive use of a single patch, an increase in the number of patches used, or both.  

Any explanatory power gained from the use of these models should be understood within 

the regional and historical context of specific cases. In the case discussed here, maize arrived in 

the Southwest as a fully domesticated crop imported from Mesoamerica (da Fonseca et al. 2015; 

Merrill et al. 2009). The adoption of domesticated maize by indigenous hunter-gatherers in the 

American southwest required less experimentation than the earliest cultivation of this plant from 

wild progenitors; but as maize moved north to the Colorado Plateau, experiments with 

cultivation in cooler climates required the development of new strains adapted to more 

temperate, high desert climates (Adams 2004; Huckell 2006; Benson 2011, 5; da Fonseca et al. 

2015). 

Barlow (2002; 2006) applied concepts from diet-breadth model to explore the 

circumstances of maize farming among the Fremont. Although researchers debate the nature of 

Fremont cultural identities and adaptations, they agree that this archaeological complex extends 

from the southeastern portion of the Great Basin to northern Southwest from ca. AD 700-1200. 

Fremont economies were based on a mixture of farming and foraging, with highly varied 

emphasis on maize farming relative to foraging (Barlow 2002: 65-70). Similar adaptations 

characterize earlier BMII populations in the northern Southwest. Using experimental data, 

Barlow (2002; 2006) modeled the efficiency of different farming methods (simple horticulture 

and intensive agriculture) relative to foraging for wild prey and plant resources on the Colorado 

Plateau. Barlow wanted to explore the productivity of hunting and gathering relative to farming 

in order to explain the mix of farming and foraging economies that characterized the Fremont. 

She found that simple horticulture based on dry farming with slash-and-burn and digging stick 
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technology was calorically comparable to foraging for high-ranked wild plant resources such as 

pinyon (Pinus edulis, P. monophylla) and cattail (Typha latifolia) pollen. But intensive 

agriculture involving water control features was comparatively more expensive yielding much 

lower net return rates than foraging or simple farming. Barlow predicted that increases in 

agricultural investments should coincide with decreasing opportunities to collect high-ranked 

resources. Conversely, she argued that people would decrease time spent in agricultural pursuits 

when there was a rise in productive foraging opportunities (Barlow 2002; 2006). In fact, de-

intensification of prehistoric agriculture, similar to that predicted by Barlow is evidenced 

apparent in some areas of the American Southwest (Phillips 2009).    

Barlow (2002) proposed that the Fremont were pushed into adopting agriculture by low 

foraging productivity due to decreased prey encounter rates and eventually intensified production 

following increased resource depression (defined as decreased resource abundance or lower 

encounter rates). Although she noted the importance of resource storability, her analysis placed 

emphasis on the immediate returns and resource rankings sensu stricto. In 2006 Barlow 

emphasized greater understanding of long-term investments, stating that expected marginal 

returns for time spent cultivating should be considered against expected immediate returns from 

foraging. Basically a forager may decide to spend an hour tilling soil if they think the increased 

crop yield (marginal value) from that effort will be greater than the immediate return they could 

get from hunting or foraging (Barlow 2006). David Phillips (2009) made a similar argument 

based on the importance of marginal values for understanding agricultural intensification and de-

intensification in the Southwest. When crops are productive, the extra hours that go into 

irrigation, field preparation, and tending increases the final payoff significantly enough to 

warrant the time spent. However, if the chance of crop failure is high, the time spent in pre-
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harvest agricultural pursuits may be more efficiently applied toward hunting or foraging, so that 

the perception of crop failure and stress can lead to a reduction in intensive farming practices 

(Phillips 2009). 

Barlow (2002; 2006) argued that explanations for the inclusion of maize and different 

levels of agricultural investment should not rest solely on the productivity of corn and high-

ranked wild resources, but should also consider the availability of lower-ranked wild seeds that 

are storable. The latter have similar benefits to maize and can potentially provide security during 

periods of scarcity. However, if farming and agriculture are truly more efficient and stable than 

foraging, archaeologists should see use of wild storable seeds diminish, and eventually all but 

vanish, with each technological development aimed at improving food production and storage.  

Both Barlow’s and Phillip’s models assume that processing costs of seeds are equal 

across time. But as Gremillion (2004) observed, the effort invested in processing low-ranked 

wild seeds during harvest season when other resources are abundant may incur high opportunity 

costs. However, since these seeds are storable and can be processed at a later date (or season) 

when pursuit of higher ranked resources is impossible, the time spent harvesting may be 

considered a more efficient investment if processing can be delayed (Gremillion 2004; 

Gremillion and Piperno 2009). Furthermore, storable wild resources that are available prior to 

the harvest could provide a safety net in case of future crop failure. For example, many of the 

wild seeds available on the Colorado Plateau such as Indian Ricegrass (Achnatherum/Oryzopsis 

hymenoides) and goosefoot (Chenopodium spp.) are relatively low-ranked due to lengthy 

processing times (Barlow 2002; 2006; Ferguson 2007, 65-69; Simms 1985, 124). Although these 

characteristics, alone do not increase the rank of these seeds relative to other storable resources 

such as beans and corn, it may help to explain their inclusion in the diet. 
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Evolutionary Development and Niche Construction Theory 

Other recent hypotheses on the advent of cultivation and domestication are outgrowths of 

nuanced understandings of genetic variation and gene expression in domesticated plants and 

animals. Although the importance of new mutations in encouraging plant and animal 

domestication is still recognized (Braidwood and Howe 1960; Zeder et al. 2006), ideas from 

evolutionary developmental biology based on phenotypic plasticity offer a more elegant solution 

(Gremillion and Piperno 2009). Furthermore, genetic evidence regarding the phenotypic changes 

in domesticates, can enhance estimates of the potential resource return rates from early 

experimentation in cultivation. Gremillion and Piperno (2009) propose that regulatory genes, 

which control the timing, location and expression of other genes, may be responsible for the 

expression certain phenotypic traits associated with domestication. So instead of selecting for a 

rare or novel mutation, selective pressure might instead impact the expression of genes already 

present in a population. If cryptic genetic variation was artificially or naturally selected, the 

average phenotype of a plant species could be changed within a few generations without the need 

for intensively breeding specimens that exhibit a singular new mutation (Gremillion and Piperno 

2009). Although not necessarily applicable to every cultigen, one possible example of this 

scenario is maize since studies have shown that certain maize-like characteristics such as 

branching and flower arrangement (inflorescence) can be induced in Teosinte (the putative wild 

precursor) by environmental stress (Doebley 2004; Gremillion and Piperno 2009; West-Eberhard 

2003). Gremillion and Piperno (2009) argue that this process in conjunction with niche 

construction theory could explain the process of domestication through human-based selective 

pressures altering gene expression.  
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Niche construction theory falls within the larger theoretical framework of Human 

Behavioral Ecology (HBE). It states that organisms intentionally and unintentionally modify 

their environment in ways that change selective pressures for their own species and sometimes 

other species as well (Kendal et al. 2011; Odling-Smee et al. 1996; 2003; Zeder 2012). For 

example, earthworm burrowing mixes and aerates sediments creating an environment that alters 

selective pressure for plants by influencing root system growth and nutrient uptake patterns. This 

also potentially influences the selective pressures on future earthworms, positively impacting 

their ability to burrow through the soil. Niche construction can also act as a conduit for 

coevolutionary processes when one species becomes dependent on the environmental alterations 

made by another (Odling-Smee et al. 1996), such as corals and the fish that inhabit coral reefs. 

Changes caused by niche construction are not always beneficial to the species creating them, yet 

can still alter selective pressures acting on phenotypic traits characteristic of a population 

(Odling-Smee et al. 1996; 2003). For instance, human agricultural activities often create areas of 

standing water where mosquitoes that spread infectious disease thrive (Diamond and Bellwood 

2003; Harlan 1995). When applied to humans, niche construction coalesces with socio-cultural 

behaviors so that changes can evolve and spread quite rapidly. As with Rindos and Harris’s 

hypotheses, evolutionary devolopment and niche construction models are not focused on 

motivation, but focus on revealing how domestication might occur (Gremillion and Piperno 

2009; Zeder 2012; Zeder et al. 2006),  

In the studies described above, neither Barlow (2002; 2006) nor Philips (2009) 

considered how niche construction resulting from farming might impact wild resource 

productivity. A post-hoc factor to consider are the indirect benefits of farming, and how these 

might impact resource procurement strategies once food production has already begun. Farming 
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activity creates disturbed soil that fosters the growth of pioneer plants and crops attract pests 

such as cottontail (Sylvilagus auduboni) and deer (Odocoileus spp.) that can be desirable prey 

(Adams 2004, 175-176; Ford 1984; 2000; Szuter 1984). Horticulture and agriculture can thereby 

generate new opportunities to forage for weedy plants and invading fauna, and further enhance 

the value of fields as a resource patch for both food procurement and production (Adams 2004, 

175-176; Fish 2004, 127; Ford 1984; 2000; Hill 1997; Stiger 1979). Normally when calculating 

energetic return rates of foraging and farming the two strategies are considered to be mutually 

exclusive—time spent farming cannot also go toward foraging (Barlow 2006). But if the field is 

considered more holistically, as a patch containing both cultivated and uncultivated plants, that 

division is less strict. If forage is part of the same resource patch as cultigens, then weeding can 

be considered foraging and people can harvest wild plants at the same time as they are caring for 

or harvesting their cultivated crops (Adams 2004, 175-176; Ford 1984; 2000). The immediate 

returns of farming efforts encompass the harvest of weedy annuals and garden pests that offer a 

complementary immediate payoff for marginal agricultural labor investments. 

Domestication as a Secondary Event 

Although the earliest known experiments with cultivation took place in the Near East 

(Bar-Yosef 1998; Braidwood and Howe 1960; Childe 1928; 1934; 1951; Diamond and Bellwood 

2003), several other centers of domestication can be found in Asia, Africa, and the Americas 

from which agriculture spread either by cultural diffusion, migration, or both (Diamond and 

Bellwood 2003; Harlan 1971; 1976; 1992; Smith 1998). Many scholars recognize approximately 

nine primary centers where food production was independently invented, although cultural 

exchange between primary centers often makes it difficult to determine the actual origin for a 

specific crop, and there can be multiple origins for a given domesticate (Diamond and Bellwood 



 

31 
 

2003; Harlan 1971; 1992; 1995; Piperno 2011; Smith 1998). These primary centers of 

domestication are where all of the world’s major staple crops originated, but do not represent 

every independent domestication event. For instance the Southwest is a secondary agricultural 

center where maize farming was adopted from Mesoamerica (da Fonseca et al. 2015; MacNeish 

and Eubanks 2000; Matson 1991; Merrill et al. 2009; Piperno 2011; Pope et al. 2001), but recent 

evidence demonstrates that Basketmaker II populations independently developed turkey 

husbandry (Nott 2010, Speller et al. 2010). Similarly, dogs were ostensibly domesticated on 

multiple occasions by hunter-gatherers in Europe and Eurasia (Larson et al. 2012).  

There are several different explanations regarding the spread of agriculture from its 

original centers, each of which apply to different geographic regions and contexts. One is based 

on migration and the idea that agricultural peoples marginalized and/or replaced hunter-gatherer 

populations (Diamond and Bellwood 2003). Because agricultural populations often exhibit a 

much higher population growth rate than foraging groups, their expansion from initial 

domestication centers seems to be a plausible explanation. This can take place as a violent 

confrontation, through deforestation and destruction of territory, or simply through indirect 

impacts on natural resources by the farming communities, that force hunter gatherers to 

assimilate (and intermarry) or move. Although this explanation is not universal, there are 

numerous recent and historical examples of expanding farmers forcefully and violently replacing 

foraging populations. The colonization of Tasmania and Australia, as well as the European 

colonization of the Americas and the corresponding genocides provide stark examples of the 

violence that can accompany such expansions when state systems are involved (Diamond 1997).   

The opposing scenario is one of cultural diffusion, where hunter-gatherer groups in 

territories adjacent to farming communities adopt agricultural lifeways or at least adopt some 
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form of food production without the necessity of migration or genetic intermingling (Diamond 

and Bellwood 2003). Evidence from recent genetic and linguistic studies (Kemp et al. 2010, 

Malhi et al. 2003, Merrill et al. 2009) suggests this may be how the spread of agriculture into the 

American Southwest took place, where Southwestern Archaic populations adopted maize.  

More commonly, food production spread through some combination of population 

expansion and cultural diffusion, involving the spread of genes, language, and culture. When the 

spread of farming involved the movement of people it usually, but not always, resulted in clinal 

genetic admixture as a result of intermarriage between immigrant farmers and indigenous 

foragers (Ammerman and Cavalli-Sforza 1984; Diamond and Bellwood 2003). For example, the 

early spread of agriculture from the Mediterranean northward into Europe resulted in higher 

levels of genetic admixture with early farming populations closer to the Mediterranean in 

comparison to European hunter-gatherers further north in places such as Ireland. According to 

Ammerman and Cavalli-Sforza (1984), even though language, culture, religion, and subsistence 

practices in northern Europe area were heavily influenced by the farming cultures of the eastern 

Mediterranean, the clinal genetic admixture resulted from a relatively low amount of genetic 

influx (Ammerman and Cavalli-Sforza 1984). Although other scenarios are possible (Fu et al. 

2012; Sampietro et al. 2007), the evidence shows that the spread of agriculture often involves a 

complex combination of migration, intermarriage, and cultural diffusion (Ammerman and 

Cavalli-Sforza 1984; Diamond and Bellwood 2003).  

Models in human behavioral ecology may be less reliable for explaining agricultural 

adoption in peripheral areas where it was spread through population migration and/or 

replacement. Subsistence migrant farmers in an unfamiliar area would be unlikely to abandon the 

means of subsistence to which they were accustomed in order to take up foraging for resources 
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that may not be entirely familiar to them (but see Barlow 2002; Diamond and Bellwood 2003, 

599; Phillips 2009). However, it is unlikely that this was the case with the development of 

farming in the Southwest (Merrill et al. 2009), so a human behavioral ecology-based theoretical 

approach to explaining the adoption of food production is logical in this context.     

Conclusion 

Although numerous factors have been proposed as catalysts for the adoption of 

agriculture, my focus is on testing whether the inhabitants of Turkey Pen Ruin chose to farm 

maize because it was profitable, or they were forced to farm due to resource depression and 

unprofitable foraging returns. I do not seek to test any of the specific theories described here 

regarding the advent of agriculture. Instead I test the conflicting assumptions about the relative 

efficiency of agriculture that are imbedded within these theories from the perspective of optimal 

foraging theory. An important element underlying both the push and pull ideas discussed in this 

chapter is that understanding wild resource productivity is central to understanding the 

implementation of agriculture. The pull model is centered on a strong preference for agriculture, 

since environmental productivity is expected to be generally low with diminishing returns and 

agriculture is considered highly efficient (Meggers 1954; Pryor 1986; Flannery 1969; 1976). The 

push model, on the other hand, emphasizes horticulture and agriculture as a supplement to 

decreases in good environmental productivity that may be temporary (Barlow 2002; 2006; 

Phillips 2009); this model correspondingly predicts that increased prey/resource availability can 

lead to a reduction in agricultural efforts. By applying HBE-based models to data from 

paleofecal analysis, I aim to inform on the circumstances that led the Basketmakers of Cedar 

Mesa to adopt maize as the central staple of their diet.  
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CHAPTER 3 

Archaeological and Environmental Context 

This chapter contextualizes the Basketmaker II period and Turk Pen Ruin within the 

geography and culture history of the greater Southwest. The specific site history of Turkey Pen 

Ruin and the occupation history of Cedar Mesa are also detailed here. Following that, I describe 

the relevant environmental and geographic attributes of Cedar Mesa, in particular those that 

relate to plant community arrangement, available resources, and subsistence strategies at Turkey 

Pen Ruin. Although the American Southwest is home to numerous cultural groups including 

Navajo, Apache, and Hispanic populations, among others, for the purposes of this chapter, I will 

focus on aboriginal farming groups whose cultural heritage and genetic descent are most 

obviously related to the occupants of Turkey Pen Ruin—the Puebloan groups from the northern 

Southwest.  

The American Southwest was famously defined by Erik Reed in 1964 as stretching from 

Las Vegas, Nevada to Las Vegas, New Mexico and Durango, Mexico to Durango, Colorado. But 

this brief description of a land bordered by four places with two names belies a vast region with 

much geological, ecological, and cultural diversity (and leaves out Utah). Although there is still 

some debate depending on the factors one uses to define it, the American Southwest includes 

Arizona and New Mexico, encompasses swaths of Utah, Colorado, and Mexico, and is 

sometimes considered to include parts of Texas, Nevada, and southern California (Cordell and 

Gumerman 2006; Cordell and McBrinn 2012; Kantner 2004, 4-7). There are few regions in the 
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world that have received as much archaeological attention as the Southwest. Sparked by popular 

interest in “mysterious” cliff dwellings and vast, multi-storied pueblos, and spurred by 

spectacular preservation and the remarkable precision of tree-ring dating, there is little wonder 

that so many archaeologists have turned their attentions toward this region (Fowler 2000). 

Furthermore, the accounts and ethnographies of descendant populations offer valuable insights 

into their ancestral history, cultural exchange, and continuity, as well as change and adaptation 

during more difficult times (Colwell-Chanthaphonh 2010; Cordell and Gumerman 2006; Dozier 

1964; Fowler 2000; Ortiz 1979; Ortman 2012).   

A Brief Culture History of the Northern Southwest 

Ethnographers and archaeologists divide the Southwest can into several culture areas 

based in part on material culture and language distributions. The three major culture areas 

associated with native farming groups are the Hohokam in the Sonoran Desert, the Mogollon 

extending across eastern Arizona, southern New Mexico, and into Sonora and Chihuahua, and 

the Ancestral Puebloan region, which covers the northern portion of the Southwest centered on 

the southern Colorado Plateau (Kantner 2004, 9-10). The Hohokam and Mogollon subregions 

shared many similarities with the Puebloan cultures to the north arising from similar adaptations 

for farming in arid climates and millennia of cultural exchange (Cordell and Gumerman 2006; 

Kantner 2004). Populations in all three areas share corn, bean, and squash agriculture adopted 

from Mexico, certain architectural similarities (though the Hohokam never developed multi-story 

pueblos), traditions of turkey husbandry, long distance trade networks and a long history of 

ceramic production. Cultural differentiation both within and between these subregions generally 

increased through time with some exceptions. From approximately 500 BC to AD 800 

(Basketmaker II through Pueblo I in the northern Southwest), these regions all displayed very 
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similar material culture and architectural styles, but around AD 800 greater regionalization of 

ceramic styles, architecture, and settlement layouts began to emerge (Cordell and Gumerman 

2006, 7-9). 

Ancestral Pueblo 

The Ancestral Pueblo region (formerly called Anasazi) is the homeland of the Puebloan 

groups descended from Basketmaker II archaeological cultures. This region is home to many of 

the archaeological and cultural wonders for which the American Southwest is most famous, 

including Mesa Verde, Chaco Canyon, and Bandelier National Monument. Modern Pueblos are 

maize-reliant farming peoples who traditionally construct and inhabit multi-story adobe or stone 

apartments with public plazas and semi-subterranean religious structures called kivas (Cordell 

and Gumerman 2006; Fowler 2000; Keegan 1999). This specific pattern developed over the 

course of centuries. For instance, the kiva was not always a purely ritual structure (Lipe 2006, 

264-268). Also, the configuration and orientation of pueblos is dependent on temporal and 

geographic context, and the plaza has not always been a central architectural feature (Lipe 2006). 

Nonetheless, this general description is broadly applicable among modern Pueblo groups after 

Pueblo III.  

Although many common threads run through the modern Pueblo cultures, this region 

exhibits a great deal of linguistic and cultural diversity across time and space (Dozier 1964; 

Fowler 2000; Keegan 1999; Ortman 2012). Modern Pueblos speak languages from six different 

families or sub-families (Hopi, Keres, Tewa, Tiwa, Towa, and Zuni), as well as English and 

Spanish. Villages generally house mission churches established by the Spanish, and communities 

practice a mix of Christian and native religion (Keegan 1999; Parsons 1939). Religious practices 

include traditional plaza dances, the use of prayer sticks, kiva ceremonies, and clown and 
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Kachina performances and rituals. The Eastern Pueblos maintain a ritual calendar marked by 

public dancing and feasts; major feast days are often associated with a patron saint and is 

generally accompanied by a special Catholic mass (Keegan 1999, 11; Parsons 1939). 

Geography is central to the histories of Puebloan peoples, although tied to their native 

lands and places, the strings are long. Even after the advent of year-round occupations in the 

Basketmaker II period, regional abandonment, migration, and cultural reconfiguration were and 

continue to be central themes in Pueblo society (Cordell and Gumerman 2006; Kohler et al. 

2010; Ortman 2012). Although many aspects of Pueblo culture such as farming, the kiva ritual, 

and patterns of inheritance have remained relatively consistent, change through movement and 

migration is a hallmark of Pueblo history. This was accompanied by high levels of interaction 

between different Pueblo communities as well as between the Pueblos and their Hohokam, 

Mogollon, and Athapaskan neighbors. Furthermore, depopulation of one region and movement 

into another was often gradual and involved resettlement into multiple areas. Consequently, 

direct connections between specific archaeological sites and contemporary Pueblo communities 

can be difficult to trace, and often a single site is tied to multiple descendant groups (Cordell and 

Gumerman 2006; Kohler et al. 2010; Reid 2006). Modern Puebloan groups exhibit a variety of 

religious customs and marriage and inheritance patterns linked to linguistic differences (Dozier 

1964; Eggan 1950; Kirchhoff 1954; Ortman 2012; Parsons 1939). Paul Kirchhoff (1954) divided 

historic Pueblos into two larger groups based on a series of linguistic, religious, and kinship 

traits. The first of these groups—Hopi, Zuni, Keres, and Jemez—includes exogamous, 

matrilineal clans. These pueblos are organized into multiple kiva groups. Their origin stories 

center on human emergence from underground, they use four or six cardinal directions beginning 

in the north, and all maintain important ritual associations with the numbers four and seven 
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(Kirchhoff 1954, 549). The second group includes Tiwa- and Tewa-speaking Pueblos composed 

of endogamous patrilineal clans. These Pueblos have dualistic political and ceremonial 

organizations involving paired kivas or kiva groups. They believe that humans emerged from 

underwater, instead of underground. Tiwa and Tewa religion uses five cardinal directions that 

begin in the east, and emphasizes multiples of three as ritually important numbers (Kirchhoff 

1954, 549).  

Table 3.1. Modern Pueblos in the Southwest 

Pueblo Linguistic Association Current Location (State) 

Hopi 3 groups/mesas 

Hopi/Uto-Aztecan Arizona 

First Mesa –Walpi, 
Sichomovi, Polacca 
Second Mesa – 
Michongnovi, Shipaulovi, 
Toreva 
Third Mesa – Oraibi, 
Kyakotsmovi, Hotevilla, 
Bacabi 
First Mesa – Hano Tewa Arizona 
Acoma Keres 

New Mexico 

Cochiti Keres 
Isleta Tiwa 
Jemez Towa 
Kewa/Santo Domingo Keres 
Laguna Keres 
Nambe Tewa 
Ohkay Owingeh/San Juan Tewa 
Picuris Tiwa 
Pojoaque Tewa 
Sandia Tiwa 
San Felipe Keres 
San Ildefonso Tewa 
Santa Ana Keres 
Santa Clara Tewa 
Taos Tiwa 
Tesuque Tewa 
Zia Keres 
Zuni Zuni 

List from Underhill 1991, page 9. 
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Archaeological Chronologies 

At the first Pecos Conference in 1927 A.V. Kidder presented what would later be known 

as the Pecos Classification (Guernsey and Kidder 1921; Kidder and Guernsey 1919). This 

chronology of the northern Southwest, developed by Kidder and Samuel Guernsey, began with a 

postulated, pre-agricultural Basketmaker I stage and extended through the Pueblo V historic 

period ca. AD 1600. The Pecos system been amended over the years, particularly through the 

application of absolute dating techniques, most notably dendrochronology (Douglass 1929). For 

the most part, however, Kidder’s chronology defining Basketmaker periods followed by several 

Puebloan periods remains intact (Lipe 1999a; Table 3.2). One problem with this classification 

system was the implicit assumption of gradualist change that accompanied it, particularly as 

regards the adoption of agriculture (Lipe 1999a). This assumption does not match the current 

evidence of cultural change and transition in the Southwest. 

Table 3.2. Chronology of the Puebloan Region of the Northern Southwest 

Paleoindian 
>10,000 – 6000 

BC 

Mobile hunter-gatherer populations, characterized 
by small bands, atlatl technology, a large focus on 
big game, particularly megafauna. Clovis and 
Folsom type-sites in New Mexico.  

Archaic 6000 – 2000 BC 

Mobile hunter-gatherer populations still using 
atlatl and dart technology, but no longer hunting 
megafauna. Heavier reliance on ground stone 
technology and smaller seeds. Open and rock 
shelter settlements. 

Early Agricultural 
Period/Early 

BMII 
2000 – 500 BC 

Adoption of corn and squash horticulture, but 
largely a continuation of the Archaic lifestyle. 
Long-term seasonal cave habitation. 

Basketmaker II 
500 BC – AD 

500 

Shallow pit house architecture, plus storage pits or 
cists indicate increasing sedentism; hamlet-sized 
settlements. Corn and squash farming dominate 
the subsistence strategy and turkey husbandry 
developed for feather blankets and ritual uses.   
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Basketmaker III 
 

AD 500 – 750 

First use of ceramics (at least for Western 
Basketmakers), plain gray wares with some black-
on-white; advent of bean horticulture; bow and 
arrow technology; deep pit house architecture. 
Settlement size increased. First Great Kiva in 
Chaco Canyon. 

Pueblo I AD 750 – 900 

Unit pueblos made from jacal with some masonry. 
Great Kivas become more common. Village-sized 
settlements. Plain and neckbanded gray pottery. 
Introduction of cotton (from trade) and 
development of loom weaving. 

Pueblo II AD 900 – 1150 

Chacoan influence – multi-story Great Houses, 
Kivas, Chacoan “roads.” Corrugated gray and 
elaborate black-on-white pottery. Large 
settlements. Trade with Mexico for luxury items.  

Pueblo III AD 1150 – 1290 

Large pueblos and cliff dwellings; towers; 
corrugated gray and elaborate black-on-white 
pottery. Mesa Verde rises to prominence. 
Depopulation of the Four Corners by AD 1290. 

Pueblo IV AD 1290 – 1539 

Migration and integration in Rio Grande and to the 
south. Large, plaza-oriented pueblos with a lower 
ratio of kivas; kachina culture becomes 
widespread. Ute and Navajo sites are present. 

Historic Period 1539 – present 

Marked by the Spanish arrival. Population decline 
due to the introduction of European diseases and 
violent conflict. Sheep husbandry and horses 
adopted by some groups. Mormons arrive at Cedar 
Mesa in 1880. Establishment of reservations. 

Sources: Cordell and Gumerman 2006, Kantner 2004; Kidder 1927; Lipe 2015; Matson 1991 

 

The chronological history of the American Southwest is well-established due in large part 

to three factors: excellent preservation of wood for tree-ring dating, excellent organic 

preservation for radiocarbon dating, and readily distinguishable ceramic traditions (Fowler 2000; 

Lipe 1999a). However, multiple chronologies and cultural phases are necessary to describe 

intraregional complexity and to explain the differing rates of change and cultural adaptations that 

occurred throughout the various sub-regions described above, which is beyond the scope of this 
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dissertation. The timeline specific to the northern Southwest (Ancient Puebloan) subregion is 

shown in Table 3.2. 

Basketmaker II Subsistence and Culture 

The Adoption of Agriculture in the Southwest 

By 2,500 BC Southwestern peoples had begun to incorporate maize-based horticulture 

into their diet (Drake et al. 2012; Hall 2010; Matson 1991; Smiley 1994; 1998). Archaeologists 

have long debated the nature of maize’s movement into the Southwest, whether it occurred via 

population migration, cultural diffusion, or some combination thereof (Roth 2017). The 

migration model states that farmers migrated into the Sonoran Desert and Tucson Basin from 

Mexico settling along arable alluvial plains. These migrants brought maize, language, and a suite 

of cultural traits with them as they advanced from southern Arizona to the Colorado Plateau 

(Berry and Berry 1986; Hill 2001; 2002; Huckell 1995; Matson 2002; Roth 2017). The linguistic 

argument for this model is based on purported the movement of Proto-Uto-Aztecan from Mexico 

northward to the Great Basin (Bellwood 2001; Hill 2001; 2002). Although initially these 

linguistic data were more strongly supported by corresponding genetic evidence (Hill 2002), 

more current mitochondrial DNA data do not support migration of women from Mexico into the 

Sonoran Desert or further north (Kemp et al. 2010; Malhi et al. 2003; Merrill et al. 2009). This 

does not preclude the possibility of male-driven migration, but given the patterns of other 

documented migrations in the Southwest, and the centrality of women’s work to an agricultural 

economy, it seems unlikely that men would be the exclusive drivers bringing maize into the 

Southwest (Merrill et al. 2009; Roth 2017).  



 

42 
 

Proponents of the migration model postulate that Western Basketmakers are a far 

northern expansion of this migration. Specifically, R.G. Matson (1999; 2002) has argued that the 

BMII populations of Cedar Mesa were migrants from the southern Southwest who were heavily 

dependent on agriculture prior to their arrival. This claim is supported by differences in material 

culture (especially stone tools and house structures) between Eastern and Western Basketmakers, 

and shared traits between Western BMII peoples and San Pedro Cochise farmers from further 

south (Matson 1999; 2002). However, other researchers have questioned Matson’s conclusions 

based on the wide distribution of these material traits, potentially rendering them undiagnostic in 

this regard (Roth 2017, 29). Isotopic evidence clearly demonstrates that earliest BMII inhabitants 

of Cedar Mesa were fully reliant on maize (Coltrain et al. 2007; 2012; Coltrain and Janetski 

2013), but this is not conclusive evidence that Western Basketmakers were part of a larger 

migration of farming communities into the Southwest. These populations could have derived 

from indigenous Archaic foragers who adopted maize farming before arriving at Cedar Mesa.   

The opposing indigenous adoption model states that maize horticulture was adopted by 

Archaic foraging populations and incorporated into their subsistence exiting subsistence strategy 

(Irwin-Williams 1973; Roth 2017; Wills 1988, 36). According to this model, the adoption of 

food production and degree of reliance on maize was contingent upon local population density 

and environmental circumstances. Maize adoption was largely motivated by predictability and 

storability under this model; these two traits made maize a suitable supplement to foraged foods 

as a risk-management strategy (Irwin-Williams 1973; Roth 2017). Although proponents of the 

migration model have pointed to evidence of sudden demographic shifts in the south, Bradley 

Vierra (2008) observed that shifting patterns of landscape use by local Archaic peoples in 

response to changing subsistence adaptations would mirror the effect of immigrating farming 
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populations in the archaeological record. The linguistic evidence for the migration model has 

also been questioned. Merrill et al. (2009) proposed that the Proto-Uto-Aztecan language family 

originated in the Great Basin and moved southward. They argue that the absence of linguistic 

cognates for maize-related terms between the Southern Uto-Aztecan (e.g., Mesoamerican, 

Tarahumaran, O’odham) and Northern Uto-Aztecan languages (e.g., Hopi and Numic languages) 

strongly suggests an earlier linguistic expansion, unrelated to the diffusion of agriculture (Merrill 

et al. 2009). Other lines of evidence including genetics and archaeological evidence indicate this 

initial expansion took place during the mid-Holocene (Merrill et al. 2009).  

If the indigenous adoption model is supported, then there should be a period of 

supplemental use of maize prior to reliance on it as a dietary staple (Irwin-Williams 1973; Roth 

2017). In the northern Southwest this is consistent with the Early Agricultural Period, during 

which maize served a supplemental role than in BMII. However, this period is not evident at 

Cedar Mesa, potentially supporting Matson’s (1999, 2002) assertions.  

Basketmaker II Maize Dependence 

As stated above, at the outset of its adoption, maize was supplemental to a diet more 

dependent on gathered plants and hunted animals (Haury 1962; Minnis 1985; 1989; Reed 1974; 

Wills 1988; Woodbury and Zubrow 1979), but at some point during BMII, foraging became 

secondary to agricultural pursuits (Geib and Spurr 2002; Huckell et al. 2002; Lipe 1999b; 

Matson 1991). BMII diets varied based on the specific degree of reliance on horticulture versus 

foraging, as well as differences in the local ecology and types of forage targeted (Androy 2003; 

Matson 1991; 2006a, b). Isotopic analyses of bone collagen from late BMII human remains in 

the Four Corners show that the level of maize consumed from ca. 400 BC to AD 400 was on par 

with that of subsequent cultural periods and was significantly greater than that eaten by earlier 
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populations (Chisholm and Matson 1994; Coltrain and Janetski 2013; Coltrain et al. 2006; 2007; 

2012; Hurst et al. 2011; Martin 1999; Matson and Chisholm 1991; 2007). Other C4 plants 

(pigweed/amaranth (Amaranthus spp.), dropseed (Sporobolus spp.), and saltbush (Atriplex 

canescens)) and CAM plants (cacti and yucca) (Coltrain et al. 2007, 308) can contribute to this 

signal, as can C3-dependent meat resources, so the incorporation of macrobotanical studies is 

also important for establishing the level of maize inclusion in the diet.  

Studies based on paleobotanical evidence corroborate conclusions based on the isotopic 

data, and further support maize reliance during BMII (Aasen 1984; Androy 2003; Cordas 2000; 

Hard et al. 1996; Lepofsky 1986; Radomski 1999). Furthermore, Reinhard et al. (1987) found 

that inhabitants of Cedar Mesa had a pinworm (Enterobius vermicularis) infection rate of 

approximately 30%, which is consistent with a sedentary agricultural lifestyle (Bryant and 

Reinhard 2012; Reinhard et al. 1987). However, since these samples were excavated as part of 

the salvage project conducted by Margaret Powers (1984), their temporal attribution is uncertain 

and potentially included specimens from the Pueblo II-III occupation, as well as BMII 

paleofeces.    

BMII was the principal formative period in the history of the American Southwest; the 

development of farming-based economies during this period gave rise to advances in food 

production still used by Puebloan peoples today (Ford 1984; Lipe 1999b; Matson 1991; 2006b, 

Reed 1954). Although the Basketmaker III period exhibited more rapid technological 

development, including bow-and-arrow technology, bean horticulture, and widespread use of 

ceramic storage and cooking containers, BMII encompasses the cultural and economic transition 

from foraging to farming society. Turkey husbandry (Lipe et al. 2016; Nott 2010; Speller et al. 

2010), permanent settlements and the origins of the pit house (Lekson 1985; Matson 1991, 44; 
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Morris and Burgh 1954), clustered mesa-top settlements (Dohm 1994), the first ceramics in the 

Southwest (Eddy 1961; 1966; Sesler and Hovezak 2011; Skibo and Blinman 1999), and heavy 

reliance on agriculture can all be traced to BMII times (Charles and Cole 2006; Chisholm and 

Matson 1994; Coltrain et al. 2006; 2007; 2012; Lipe 1999b; Martin 1999; Matson 1991; 2006b; 

Matson and Chisholm 1991; 2007). Since this period was central to the development of 

agricultural reliance, information on diet and nutritional supplementation of maize during BMII 

can lead to a better understanding of how the Southwest economic complex based on corn, bean, 

and squash farming ultimately evolved.  

BMII is a temporally broad and geographically widespread archaeological culture. It 

spanned 1000 years across hundreds of square miles of the Colorado Plateau. BMII populations 

can be spatially categorized into at least two probable ethnic groups (Eastern and Western 

Basketmaker), and these can be further differentiated by several spatio-temporally distinct 

cultural phases (Haase 2006; Lipe 1999a, b; Matson 1991; 2006b, Morris and Burgh 1954; 

Smiley 2002). The designation of BMII is largely based on general mode of subsistence and its 

resulting cultural traits. BMII peoples were pre-ceramic, semi-sedentary maize horticulturalists 

who lived in permanent household or hamlet-level settlements (Matson 2006b). Like their 

Archaic predecessors, they relied on one-hand manos and metates to grind their food, and they 

excavated various types of cists, often into the floors of pit houses, as storage facilities. They 

hunted with atlatls but generally did not eat much meat (Matson 2006b). Farming methods and 

occupational settings varied temporally and by region, as did some architectural details. 

Although maize dependence in these populations has been established, a maize-based diet 

does not offer complete nutrition. Several essential vitamins and nutrients are insufficiently 

supplied by maize, including lysine, vitamin A, vitamin C, B-complex vitamins, and iron, as 
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discussed in further detail in Chapter 5 (Bressani et al. 1997; Spielmann and Angstadt-Leto 

1996; USDA 2012). Before the advent of bean horticulture ca. AD 500 (Geib and Spurr 2000; 

Wormington 1961), it is unclear how these populations adequately supplemented their maize-

based diet and obtained these and other essential nutrients in the absence of substantial amounts 

of meat. There is evidence that nixtamalization (alkali cooking) by limestone boiling enhances 

the accessibility of some nutrients present in maize (Ellwood et al. 2013), but additional 

supplements would still be required in circumstances of heavy reliance on corn. Specifically, 

nixtamalization prevents pellagra—a disease caused by nutritional deficiency that affects the 

skin, digestive, and nervous systems—by increasing the digestibility of niacin. Further, 

nixtamalization provides better access to some essential amino acids present in maize such as 

methionine, tryptophan, and lysine (Bressani et al. 1997; Ellwood et al. 2013). Nevertheless, 

even nixtamalized maize does not contain sufficient quantities of amino acids to meet human 

nutritional needs (Bressani et al. 1997; Matson 2016; Spielmann and Angstadt-Leto 1996).  

Meat, including turkey (Meleagris spp.), offers one possible nutritional supplement to 

complement maize (Spielmann and Angstadt-Leto 1996). However, current evidence does not 

indicate the inclusion of much animal protein in BMII diet at Turkey Pen Ruin (Cooper et al. 

2016). Some have even suggested that the BMII diet at Turkey Pen Ruin was very nearly 

vegetarian (Matson and Chisholm 1991); although given what we now know, this assessment is 

appears to overestimate the degree of plant dependence at the site. Turkey husbandry during 

BMII is apparent (Lipe et al. 2011; 2016; Nott 2010; Speller et al. 2010), but there is no evidence 

supporting regular use of turkey meat at Turkey Pen Ruin based on isotopic or coprolite studies 

(Aasen 1984; Cooper et al. 2013; 2016; Lipe et al. 2016). In light of the above, questions about 
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subsistence and nutrition from this period should center on supplemental plant foraging habits 

and possible supplemental meat consumption.  

With no bean horticulture and without evidence supporting significant inclusion of meat 

in their diet, foraged plants offer an alternative primary supplement for incomplete maize 

nutrition during BMII at Turkey Pen Ruin. Uncultivated plant resources such as amaranth, 

chenopodium, purslane (Portulaca spp.), pine nuts (Pinus edulis), and Indian ricegrass offer 

excellent supplements to maize (Bressani et al. 1987; 1997; Gebhardt and Thomas 2007; Matuz 

et al. 2000; Pal and Prakash 1998; Simopoulos 2004; Thomas and Gebhardt 2006). Some of 

these plants such as chenopodium and amaranth also yield edible greens that provide easily 

accessible nutrients, but their protein-rich seeds are relatively low ranked due to high collection 

and processing costs (see Chapter 5 for nutrition information and caloric return rates). Inclusion 

of these low ranked items could indicate of a lack of access to higher ranked resources such as 

pine nuts that provide more calories and nutrients for less effort. Alternatively, some of these 

plants are drawn to areas disturbed by humans and tend to grow at higher rates in shade-free 

environments such as agricultural fields. Consequently, these weedy annuals could have 

provided a convenient and nutritious supplements to corn, despite their presumed low rank in the 

diet. 

The use of weedy annuals as a supplement to maize agriculture is ethnographically 

documented among the Tarahumara of northern Mexico (Bye 1981; Kahl 1987), who also rely 

heavily on plant resources with little supplemental animal protein (Cerquiera et al. 1979). 

Furthermore, several of the plants that would have grown in and around agricultural fields also 

have medicinal qualities: amaranth and purslane can help alleviate diarrhea and other ailments 

(Simopoulos 2004; Kalinova and Dadakova 2009) and chenopodium has anti-parasitic properties 



 

48 
 

(Kliks 1985). These properties would have been advantageous in an increasingly sedentary 

population experiencing high rates of infection. In short, information on specific plants and how 

they contributed to the diet at Turkey Pen Ruin enables us to build on current understandings of 

resource availability, diet breadth, and subsistence choices during this crucial time in Pueblo 

prehistory. 

Site Description  

The paleofeces incorporated into this study were all excavated from Turkey Pen Ruin, a 

dry rock shelter site nestled deep within upper Grand Gulch in the northwest portion of Cedar 

Mesa (Figures 3.1 and 3.2). Turkey Pen Ruin is one of the longest-occupied sites on Cedar Mesa, 

inhabited intermittently for hundreds of years during the BMII, BMIII, and Pueblo II-III periods 

(Aasen 1984; Bedell 2000; Lipe et al. 2011; Powers 1984). The site is composed of two levels 

with several rooms for occupation and storage as well as one subterranean kiva dating to PII or 

III, and one above-ground kiva dating to PIII (Bedell 2000; Powers 1984); the larger, lower level 

is easily accessible on foot, while the higher level can only be accessed by ladders or climbing 

and appears to house only storage rooms and the above-ground kiva (Figures 3.3a, b, and c). 

Rock art is abundant including handprints, simple geometric shapes, and anthropomorphic and 

animal images, and axe grinding slicks occur in clusters, primarily in southwestern portion of the 

lower level (Figures 3.4a and b). Smoke stains on the roof of the rock shelter delineate the 

locations of house walls (both currently standing and no longer present). The cliff overhang 

provides a pleasant view to the southeast into Grand Gulch and serves as an effective shelter 

from the heat of the afternoon sun in summer (Powers 1984). Evidence for BMII occupation 

(other than the associated dates and paleofeces) includes jar-shaped cists excavated into the floor 

of the shelter as well as some of the rock art at the site (Bedell 2000, Powers 1984).  
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Figure 3.1. Map of Cedar Mesa and Cedar Mesa Project area with color coding for elevation. 
Map by Sue Matson, provided courtesy of William D. Lipe. 
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Figure 3.2. Map showing location of Turkey Pen Ruin within upper Grand Gulch.  
Figure from Aasen 1984, 15: Figure 1.  
  

 



 

51 
 

 

 

Figure 3.3a. The rockshelter overhang. (top left)  

Figure 3.3b. Puebloan house structures with soot stains and BMII period rock art. (top right)  

Figure 3.3c. View from within Turkey Pen Ruin. (bottom) This figure shows a portion of the 
subterranean kiva, the remains of some of the Puebloan structures. Remnant masonry is visible 
on the upper shelf of the rockshelter in the top left portion of the image.   

 



 

52 
 

Precipitation in this area is unpredictable, however, water can be accessed from springs at 

the canyon heads, canyon stream beds, and mesa-top potholes (tinajas) (Matson et al. 1990, I-9; 

West 1978). Abundant, diverse local plant life would have provided inhabitants with 

construction materials, materials for basketry and other crafts, medicinal resources, and of course 

forage. The sandstone all around the site can be used to make grinding implements and Cedar 

Mesa’s high quality limestone is ideal for stone boiling (Ellwood et al. 2013; Holstad 2010; 

Matson 2016, 28). Animal resources, particularly big game, are not thought to have been very 

abundant in this area during BMII times (Matson 1991). However, Turkey Pen Ruin has some of 

the earliest evidence for turkey domestication in the Southwestern United States (Lipe et al. 

2016; Nott 2010; Speller et al. 2010). Strong evidence supporting turkey husbandry at Cedar 

Mesa and Turkey Pen Ruin has been dated to the BMII period (Lipe et al. 2016; Nott 2010; 

Speller et al. 2010), and the site itself is named for a turkey pen associated with the later 

Puebloan occupation (Lipe et al. 2016; Matson 1991).  

 

Figure 3.4a. Rock art.  

Figure 3.4b. Axe grinding slicks from Turkey Pen Ruin. 
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Although not grandiose, Turkey Pen Ruin is an archaeologically interesting and 

beautifully situated site. However, much of the published data and information derived from the 

site has come not from the architecture and rock art, but from a 50 x 50 cm stratified midden 

column and the associated side clearing excavated by R.G. Matson and a team of archaeologists 

in 1972 as part of the Cedar Mesa Project (Figure 3.5). This column was excavated using a 

“Junius Bird” method of exposing and isolating a single stratified segment in order to ultimately 

transport a portion of intact sediment and sediment layers to the laboratory for future research 

(Matson 2015). All but the topmost layer of this midden appears to have been deposited during 

the BMII occupation and has yielded numerous, well-preserved organic remains, including an 

abundance of human and animal paleofeces (Aasen 1984; Kemp et al. 2009; Lipe et al. 2011; 

Matson 1991; Nott 2010). The excavated portion of the midden also contained numerous corn 

cobs, quids, feathers, human hair, egg shells, and other plant and animal remains (Cordas 2000; 

Lepofsky 1986; Lipe et al. 2011; Radomski 1999). Multiple MA theses (Aasen 1984; Cordas 

2000; Nott 2010), conference presentations (Battillo et al. 2014; 2016; Cooper et al. 2013; Kemp 

et al. 2009; Nott et al. 2009; Wyatt et al. 2009), and publications (Cooper et al. 2016; Lipe et al. 

2011; 2016; Speller et al. 2010) have been either partially or wholly written on the contents of 

this midden. Studies on the Turkey Pen Ruin midden have provided invaluable data on 

Basketmaker II diet, turkey domestication, and ancient human genetics. Since previous research 

has demonstrated a high degree of spatial variation in supplemental dietary plant use in the 

Southwest (Androy 2003; Minnis 1989), a large amount of data from a single site allows the 

study of resource choice, without space as a confounding factor.  

Given the quantity and quality of the information that has been gleaned from this single 

midden column, it is especially unfortunate that only a few years after its excavation, a large 
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portion of Turkey Pen midden was pillaged by looters in 1979 (Matson 2015; Powers 1984). 

This destruction spurred a salvage excavation, led by Margaret Powers (1984), which resulted in 

further coprolite analysis (Reinhard 1987) and the recovery of more Basketmaker material 

(sandals, Z-type twisted cordage, and chapalote maize) as well as Puebloan materials (Powers 

1984). The two looters responsible for the 1979 vandalism were prosecuted under ARPA and 

convicted of damage to government property, but this is cold comfort in light of the damage 

incurred from multiple episodes of looting (Green and Hanks 1985; Lipe et al. 2016; Powers 

1984).    

 

Figure 3.5. Partially isolated midden column.  
Photograph courtesy of R.G. and Susan Matson. 
 

Calibrated radiocarbon dates from the Turkey Pen midden column span from 

approximately 90 BC to AD 540 (Figure 3.6), incorporating the latest portion of the White Dog 

cultural phase (500 BC – ca. 1 AD) and extending through the terminal Grand Gulch phase (AD 

200 – 400) (Aasen 1984; Lipe et al. 2011; Matson et al. 1990). The Grand Gulch Phase, 

established by Matson and colleagues during the Cedar Mesa Project, is a bit of a misnomer 
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given its association with dry, mesa-top farming and movement away from canyon-based 

floodwater farming (Matson 1991; Matson et al. 1990). Clovis and Archaic use of Cedar Mesa is 

evident (Cole 1993; Coltrain et al. 2007; Davis and Till 2014; Geib and Davidson 1994), but the 

vast majority of the occupation is from BMII and later periods. The preponderance of BMII 

occupations fall within the Grand Gulch phase (Matson et al. 1990).   

The midden dates from Turkey Pen Ruin also encompass an unnamed time period 

between AD 1 and 200 that has sometimes been grouped with the White Dog or Lolomai phases 

(Matson 1991). The White Dog phase is so named for the mummified dog burials found in White 

Dog Cave, Arizona and is generally attributed to rock shelter sites older than 2000 years, 

although some later BMII occupations have also been tied to this phase (Geib and Spurr 2000; 

2002; Matson 2006). This phase is also characterized by floodwater farming, one-hand manos, 

two-rod-and-bundle basketry, and less dependence on corn than subsequent phases (Matson 

1991). The later Lolomai phase dating approximately AD 50 to 250 (Matson 1991; Smiley 1985) 

is commonly associated with open-air pithouse occupations in areas suitable for floodwater 

farming on Black Mesa. However, this difference may be an artifact of geography rather than a 

cultural variation, since Black Mesa can be distinguished from Cedar Mesa by its many broad 

washes and poor-quality upland soil. These combined factors would have encouraged the 

Lolomai Basketmakers to pursue floodwater rather than mesa-top farming and occupations 

(Matson 1991).  

Although there is a later date of around AD 1045 from the uppermost portion of the 

column, all samples in this study come from levels dating approximately 100 BC to AD 500 

(Aasen 1984; Kemp et al. 2009; Lipe et al. 2011; Matson 1991; 2015). Turkey Pen Ruin lacks 

some of the defining traits of the Grand Gulch phase. For instance, this phase is characterized by 
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an occupational shift to new areas with an increasing use of mesa tops rather than rock shelters 

(Dohm 1994; Matson 1991; 1994; 2006a, b; Matson et al. 1990). Prior to this phase, Western 

BMII peoples are thought to have used floodwater farming techniques, with fields in broad 

washes and other low lying areas. This type of farming was likely facilitated by ease of access 

since prior to the Grand Gulch Phase BMII peoples generally lived in rock shelters (Lipe 1966; 

Matson 1991; 2006a, b; Smiley 1994; 1998; Smiley and Gumerman 1986). During the Grand 

Gulch Phase, dry farming on mesa tops led to occupations in dispersed hamlet clusters at higher 

elevations and a movement away from canyons and rock shelters (Coltrain et al. 2012; Dohm 

1994; Hurst et al. 2011; Matson 1991; 1994; 2006a, b; Matson et al. 1990). Mesa-top Grand 

Gulch Phase inhabitants of Cedar Mesa had settlement patterns remarkably similar to BMIII and 

Puebloan peoples, likely indicative a similar approach to subsistence farming (Dohm 1994). 

Settlements during this period were often built in areas with dense pinyon-juniper woodlands, 

which grow in the deepest and most productive mesa-top soils—a good gauge of higher 

precipitation (Haase 1983; Matson 1991, 83-92). Since Turkey Pen Ruin is a rock shelter 

habitation falling into this time period, dietary research could inform on a wider range of 

adaptive strategies and help to explain what motivated people to move to the mesa tops. 

Furthermore, radiocarbon dating conducted on eight of the paleofecal samples, in conjunction 

with the midden stratigraphy and associated dates, can potentially help to illuminate dietary 

shifts associated with the Grand Gulch phase.      
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Figure 3.6. Turkey Pen Ruin midden profile with associated radiocarbon dates.  
Figure from Lipe et al. 2011. 
 

Previous analyses of the macrobotanicals and paleofeces from the midden indicate mixed 

consumption of maize, wild plants, and weedy annuals (Aasen 1984; Lepofsky 1986; Reinhard 

1992). Analyses of macrobotanical remains, paleofeces, and midden flotation samples identified 

corn, squash (Cucurbita spp.), amaranth, ragweed (Ambrosia spp.), banana yucca (Yucca 

baccata), pine nuts (Pinus edulis), and an abundance of quids (Cordas 2000; Lepofsky 1986; 

Powers 1984; Radomski 1999; Reinhard 1992). Aasen (1984) analyzed 28 human paleofeces 

(and two turkey droppings) from Turkey Pen Ruin and found that maize, pine nuts, and Indian 

ricegrass were the three most common food items. Based on the additional presence of beeweed 

(Cleome spp.) pollen, and other seasonal plant remains, Aasen (1984: 63-64) concluded that most 
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of the plants eaten by inhabitants were harvestable from early summer to fall, although she did 

not rule out the possibility that some specimens with low pollen concentration values were 

attributable to a winter occupation. In a later study incorporating Aasen’s data, Jerry Androy 

(2003) concurred that Turkey Pen Ruin was likely a late spring through fall occupation, as did 

Dana Lepofsky (1986) in her study of the macrobotanical remains from the midden matrix (see 

Matson 1991, 94-97). However, not all of the data are in accord with this inference, especially 

since many of these summer/fall plants are storable and because Indian ricegrass (found by 

Aasen) and stickyweed (Mentzelia spp.) (found by Lepofsky) commonly peak in spring. Further 

testing on a larger sample could help to support Aasen’s conclusion or could support a year-

round occupation. Although conventional wisdom holds that Basketmaker II peoples were 

seasonally mobile, their heavy dependence on maize indicates that these groups were more 

sedentary than previously thought (Matson 1991). Nelson (1994) also shows that sources for 

lithic tools were predominantly local and thus indicated raw material procurement patterns 

similar to those of later occupations on Cedar Mesa. Furthermore, Reinhard and Jones (1987) 

discovered evidence of spring occupation during their analysis of 25 unprovenienced coprolites 

from the Turkey Pen “cleanup” project, but due to the lack of specific context and the presence 

of beans in two of these samples, the temporal association is less certain (Androy 2003; Matson 

1991).    

More recently, researchers have taken an interest in turkey husbandry at Turkey Pen 

Ruin. As with much modern research on domestication (Zeder et al. 2006), studies of turkey 

domestication in the US Southwest have benefited from aDNA evidence, some of which has 

come from Turkey Pen Ruin (Nott 2010; Speller et al. 2010). A large number of turkey feathers, 

some bones, and feces were recovered from the site, and the dietary constituents and mtDNA 
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from the turkey feces associated with the midden have been analyzed to determine the origins of 

turkey domestication in the Four Corners region (Lipe et al. 2011; Nott 2010; Speller et al. 2010; 

Wyatt et al. 2009). Based on the high occurrence of corn relative to wild resources, Nott (2010) 

concluded that turkeys were being kept and fed. Moreover, researchers investigating mtDNA 

found that the birds kept at Turkey Pen Ruin originated in North America and were not from 

domesticated Mexican stock, as was previously thought (Speller et al. 2010 , Wyatt et al. 2009). 

Interestingly, the advent of turkey husbandry appears to have had no measurable effect on BMII 

diet.  Recent work using isotope analysis of a single strand of hair from Turkey Pen Ruin shows 

it is unlikely that people consumed turkeys (Cooper et al. 2013, 2016). Cooper and colleagues 

(2013, 2016) similarly found that nitrogen isotope levels of a human hair did not place its owner 

on a higher trophic level than turkeys, indicating that neither turkey meat nor eggs were a regular 

part of the diet. If not raised as a source of supplemental protein, turkeys likely provided feathers 

and bones for blankets and ritual use (Lipe et al. 2016; Speller et al. 2010), and possibly provided 

valuable pest control services (Stiger 1979). Furthermore, relatively few faunal remains were 

recovered from Turkey Pen Ruin, supporting arguments for little meat consumption (Aasen 

1984; Cooper et al. 2013; Matson and Chisholm 1991) and leading some to suggest that the 

prehistoric occupants of Cedar Mesa had limited hunting opportunities (Androy 2003; Matson 

1991; Powers 1984). Reinhard and Jones (1987) found bone in 12 out of the 25 paleofecal 

samples they analyzed, and animal hair and feathers in others, but Aasen (1984) found bone in 

only four out of 28 samples. Since Reinhard and Jones’ specimens were unprovenienced and 

given that Aasen’s data is much more in line with other findings from the BMII occupation of 

this site, the preponderance of evidence still indicates that meat consumption among was low. If 
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this is the case, then wild plants would have been vital sources of essential amino acids, iron, and 

other nutrients lacking in maize prior to the advent of bean horticulture in the area.       

Environmental and Ecological Context 

Geography and Climate 

Cedar Mesa as a physiographic landform is loosely defined as the portion of monument 

upwarp bordered by Comb Ridge on the east side, the Elk Ridge escarpment to the north, 

Redrock Cliffs to the west, and the San Juan Canyonlands to south (Figure 3.7). The topography 

is characterized by broad, billowing mesa-tops incised by deep, narrow canyons like Grand 

Gulch (Matson 1991, 102; Matson et al. 1990). The mesa itself is composed of Permian-age, 

calcareous Cedar Mesa sandstone, interspersed with lenses of shale and limestone (West 1978, 

13).  Matson and colleagues defined the Cedar Mesa Project area as the 800 sq. km area 

encompassing the mesa top and portions of the surrounding washes ranging from approximately 

5600 – 6800 feet (1706 – 2073 m) (the elevations most likely to have good farming and 

associated archaeological sites) (Matson et al. 1990; Matson 2015). The mesa-top is not truly 

flat, given that a central ridge runs along its north-south axis and the resulting east-west slopes 

divide the drainage from the mesa top into Grand Gulch and Comb Wash (Matson et al. 1990, I-

6); the mesa top is also higher in the northern than southern portions (West 1978, 11). The floor 

of Grand Gulch is approximately 6000 feet (1829 m) above sea level in the vicinity of Turkey 

Pen Ruin.  

As part of the Colorado Plateau, Cedar Mesa is classified as having a cold/high desert 

climate, typified by cold winters, hot daytime summer temperatures, and little rainfall (CEC 

1997). Average precipitation is approximately 10 in. (254 mm) in the southern portion of the 
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mesa, and about 12-13 in. (300-330 mm) in the northern portions (Matson et al. 1990, I-26; West 

1978: 17). This presents something of a catch-22, however, since the northern portion of the 

mesa is also more elevated and therefore has an average growing season of only 129 days, while 

the southern mesa growing season is approximately 144 days, well within the Hopi maize 

requirements of a 130-day growing season (Matson et al., 1990, I-10). Vegetation on the eastern 

side of the mesa indicates that that area receives more moisture than the western portions (West 

1978, 18). Although summer rains are often intense, rapid runoff and evaporation render them 

less effective than winter precipitation for contributing to plant growth, so the shifting seasonal 

precipitation patterns are also important to potential crop output and wild resource abundance 

(Haase 1983; Matson et al., 1990 I-8; West 1978, 18).   

 

Figure 3.7. Cedar Mesa Project sampling design.  
Figure from Matson’s 2011 presentation at the 76th annual meeting of the Society for American Archaeology.  
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Although these are modern statistics, there is little evidence for change in the 

environment of the Southwest since the mid-Holocene except for episodic droughts. However, 

these episodic shifts in climate may have contributed to the lack of high-value resources during 

the late Archaic and Early Agricultural Period. Evidence from palynological records, δ18O 

isotopes, tree rings, and other sources show a prolonged dry period between ca. 2800 and 1850 

BP in the western and central Great Basin (Grayson 2011; Mensing et al. 2007; 2013; Tausch et 

al. 2004). Though these climatic studies do not include evidence from the Four Corners region, 

drier conditions may have prevailed in this area as part of a larger drought pattern in the 

Southwest associated with El Niño-Southern Oscillation conditions (Mensing et al. 2013). 

Rouston and colleagues (2011) used tree ring data from bristlecone pine (Pinus aristata) to 

reconstruct more than 2000 years of climate records in the Four Corners and found that AD 1-

400 (the entire late BMII period) represents an unusually arid time. In particular, during the 

period from AD 122-172, the tree ring data indicate that a mega-drought covered vast swaths of 

the Western US (Rouston et al. 2011). These data, however, are limited, so that the precise 

impact of this drought for local conditions on Cedar Mesa is not well understood.  

Ecology 

 The American Southwest encompasses multiple deserts, mountain ranges, major and minor 

rivers, plateaus, and canyons; the variation in latitude and the diversity of landforms have formed 

a number of ecologically-distinct areas. However, in the Southwest, the major ecological 

divisions within a given area can often best be mapped according to altitudinal zonation 

(Daubenmire 1943; Merriam 1889; West 1978). Although there are differences in flora and fauna 

with respect to latitude (e.g., Saguaro cactus do not grow in the north), elevation is strongly 
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correlated with precipitation and number of frost-free days, so that major vegetation regimes tend 

to self-segregate along topographic lines (Daubenmire 1943; Merriam 1889).  

C. Hart Merriam (1889) and R.F. Daubenmire (1943) defined and delineated several 

vegetation zones in nearby Arizona and the Rocky Mountains, but only three of these are seen at 

Cedar Mesa. It should be noted that Merriam’s (1889) more imprecise zones encapsulate all of 

the vegetation regimes on Cedar Mesa into one larger zone: the Upper Sonoran or chaparral 

zone, which includes sagebrush (Artemisia spp.), scrub oak (Quercus spp.), pinyon, and juniper 

(Juniperus spp.), so his classifications are not useful for this project. Although elevation is the 

primary factor affecting modern (and likely archaeological) plant distributions on Cedar Mesa, 

other factors include exposure, aspect, microclimate, and edaphic (soil) factors (West 1978, 31). 

Gerald West (1978) identified nine separate vegetation zones on and surrounding Cedar Mesa, 

but for the purposes of this project, I will focus on the six of these found on Cedar Mesa as 

defined by the Cedar Mesa Project (Matson et al. 1990).  

Starting from the highest elevations, pinyon-juniper woodlands are commonly associated 

with elevations of approximately 1370-2290 m. At Cedar Mesa they grow primarily on the mesa-

top (approx. 1951-2134 m) and are clustered in areas of deeper soil (Daubenmire 1943; Gottfried 

et al. 1995; West 1978, 32-38). These conifers are also commonly accompanied by grasses (Poa, 

Stipa, and other genera), forbs (Euphorbiaceae), prickly pear (Opuntia spp.), and some sparsely 

distributed shrubs such as soap bush (Ceanothus) and mountain mahogany (Cercocarpus 

montanus) (Daubenmire 1943; Gottfried et al. 1995; West 1978). Sage parkland also occurs in 

patches of the mesa top within and around pinyon-juniper woodland, as it did in ancient times 

(West 1978, 39). These patches are dominated by a combination of sage and grasses but also 

includes other plants and are generally more diverse than pinyon-juniper woodlands. Though not 
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generally associated with the mesa-top, West (1978, 41) noted dense thickets of blackbrush 

(Coleogyne ramosissima) in some places along the western edge of the mesa; this plant is found 

only in well-drained sandy areas that receive less than eight inches of annual precipitation (West 

1978, 41), so blackbrush would primarily occur in the southern portions of the mesa, which 

receive less rain (Matson et al. 1990, Ch. 1). 

The oak-mountain mahogany zone (Daubenmire 1943) is visible in the canyon areas of 

Cedar Mesa and encompasses West’s (1978) rim-rock and cliffside and canyon bottom zones. 

Many of the plants that fall into this vegetation regime thrive in Grand Gulch. This zone is 

dominated by oak (Quercus spp.), mountain mahogany, willows (Salix spp.) and cottonwood 

(Populus spp.), but also includes three-leaf sumac (Rhus trilobata), antelope bitterbrush (Purshia 

tridentate), serviceberry (Amelanchier spp.), snowberry (Symphoricarpos spp.), and species of 

hackberry (Celtis spp.) and elm (Ulmus spp.) in some areas (Daubenmire 1943). At Cedar Mesa, 

the rim-rock and cliffside zone includes some extension of pinyon and juniper as well. Grand 

Gulch, itself, is divided into multiple terraces and includes a streambed and areas of standing 

water. While the higher terraces are somewhat similar to the mesa-top including pinyon, juniper, 

and sage, the lowest terrace and stream beds are distinct and dominated by other taxa such as 

cottonwood and willow (West 1978). 

Finally, at the lowest elevations surrounding Cedar Mesa, the basal plain vegetation 

(Daubenmire 1943) is dominated by sagebrush, bunch grasses, cacti, and halophytes such as 

greasewood (Sarcobatus vermiculatis) and saltbush. This zone is also likely to include 

blackbrush since lower elevations receive less precipitation than the mesa.  

West also found disturbance zones at most elevations around Cedar Mesa. Modern 

disturbance occurred as a result of grazing of sheep and cattle, oil and gas activities, and road 
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construction, but some of the disturbance areas were abandoned experimental garden plots left 

by members of the Cedar Mesa Project (West 1978, 46). Although disturbed areas can occur at 

any elevation, what is relevant about these plant communities is that they are consistently and 

markedly different from the vegetative communities that surround them. Disturbance areas are 

dominated by plants from genus Amaranthus and Chenopodium, as well as asters and members 

of the family Brassicaceae (West 1978, 46).  

Conclusion 

Analysis of the Basketmaker II paleofeces from Turkey Pen Ruin affords the opportunity 

to examine the circumstances leading up to modern, intensified Puebloan farming practices. The 

temporal association of these specimens with maize-dependent farmers prior to the advent of 

bean horticulture allows for analyses that incorporate caloric and nutritional concerns. The 

geographic location of Turkey Pen Ruin within a landscape that can be divided into ecological 

zones provides potential for research into landscape-based foraging patterns. Aspects of the 

Southwestern environment such as altitudinal variation in plant communities and differentiation 

between the plant composition of disturbed settings and the surrounding ecological communities 

provide for the possibility of developing a more in-depth understanding of the subsistence 

strategies of the earliest farmers to occupy Cedar Mesa. Furthermore, the context of the samples 

in this study within the greater history of BMII agricultural development mean that research into 

the Basketmaker II occupation at Turkey Pen Ruin could reveal key factors that led to the 

subsequent Grand Gulch phase transition to mesa-top occupations and more intensive dry-

farming methods still used by modern Hopi and Zuni peoples (Eggan 1950). 



 

66 
 

CHAPTER 4 

Materials and Methods 

A total of 44 human paleofeces from Turkey Pen Ruin were analyzed for this 

dissertation. All specimens were sampled and analyzed for pollen and macroscopically 

identifiable plant and animal remains. Twenty of these also were tested for human, plant, and 

animal DNA, and eight were assayed for AMS dates. Since the analyses used here are 

destructive, all specimens were subsampled, leaving a portion of each for future research. The 

methods for sample processing and data collection are discussed below, as are the caveats 

regarding each type of data set. 

Botanical Analyses 

Sample Selection and Preparation 

  Paleofecal samples were chosen based on several criteria, including size (with a 

preference for larger samples), physical integrity, likely human affinity, and context within the 

midden. I included samples from all midden strata and as many of the layers as possible in order 

to capture any potential temporal changes or trends, however not all of the layers were equally 

represented since some of them contained significantly more specimens than others. 

Several dozen paleofeces were recovered from the excavated portion of this midden, 

which also included turkey and herbivore droppings. However, based on color, physical 

appearance, organic contents (for example, ground corn and charcoal), DNA evidence, and to a 
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lesser extent solution color and opacity in trisodium phosphate (discussed below), all paleofecal 

samples analyzed here appear to be attributable to humans. Although it was my original intent to 

include some of the samples previously analyzed by Kate Aasen in 1984 to assess inter-observer 

error, this was impossible since those samples could not be located. It is probable that all of the 

samples she analyzed were destroyed in the course of her work and any remaining fecal 

fragments were lost over time.  

Prior to processing, each whole paleofecal specimen and the portion subsampled for 

botanical analysis were weighed. Specimens were sampled using disposable razor blades to 

prevent cross-contamination. Due to variation in shape, size, texture, and density of the 

paleofeces, it was impossible to subsample in uniform weights or sizes. I also attempted to cut 

along existing contours to prevent specimen disintegration, and when possible I used fragments 

from specimens that were already broken so that no cutting was required. Furthermore, initial 

sampling from very large specimens in the earliest stages of data collection resulted in some 

samples being larger than those processed later in the study from much smaller specimens. 

However, to limit the impacts that different sized samples had on the interpretation of results, 

raw pollen counts were converted to percentages and densities based on grains per gram, and 

macrobotanical samples were subsampled in uniform volumes for analysis.  

Before sieving for macrobotanical remains and chemical processing for pollen analysis, 

the weighed subsamples were gently rehydrated in a trisodium phosphate (Na3PO4) solution 

(approx. 0.5%) for a minimum of 48 hours (after Callen and Cameron 1960). Following 

rehydration the color of the solution of each sample was recorded by reference to a Munsell color 

chart. The level of solution opacity was also noted because solution color and transparency can 

indicate whether paleofeces originated from a human (generally dark and opaque solution), 
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carnivore, or herbivore (lighter more translucent solution) (Fry 1976; Jones 1983). However, 

more recent research, including work at Antelope House (Reinhard 1988) has found that this 

method is not always a reliable indicator of human affinity (Reinhard and Bryant 1992, 259-

261), and so it was not given much weight in this project. 

Pollen Processing and Analysis 

 Palynological analysis was conducted to investigate ingested economic pollen and to gather 

seasonal and ecological data from pollen present as a result of local pollen rain. Determinations 

regarding whether a particular pollen taxon was ingested because it was part of the subsistence 

economy or was incidentally ingested due to environmental presence were based three criteria: 

1) the mechanism of distribution (wind or insect/animal), 2) the amount/density of a particular 

pollen in a subsample, as discussed further below, and 3) the presence of clusters of connected 

pollen grains that can demonstrate direct ingestion of flowers, and are unlikely to be deposited by 

wind (Dean 1993; Reinhard 1993). I also took into consideration the associated macrobotanical 

contents in the paleofeces. For example, a large amount of grass pollen associated with a high 

density of Indian ricegrass seeds in the same sample suggests that pollen was ingested as part of 

the diet.  

Processing of the first several samples was conducted at a dedicated palynological 

laboratory in the Anthropology Department at Washington State University, but the majority 

were processed in the palynology laboratory located in the Earth Sciences Department at 

Southern Methodist University. Palynological sample processing requires at least two laboratory 

working days and digestion in several different acids and oxidizing agents. The primary 

structural component of a pollen grain—sporopollenin—can withstand extreme conditions and 

very low pH levels in acids that will destroy other particulates in a sample (Faegri and Iverson 
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1989). Palynological samples, therefore, are processed with the intent of eliminating other 

particles in the sample while simultaneously removing proteins and cellulose from the pollen 

grains that can obstruct identifying features. The pollen samples in this dissertation were 

processed according to a combination of standard procedures described below and as outlined in 

a variety of publications and studies (Bryant and Hall 1993; Faegri and Iverson 1989; and 

others).  

After trisodium phosphate rehydration, samples were rinsed with deionized water and 

consolidated into 50 ml Nalgene test tubes. Consolidated samples were then digested in 10% 

hydrochloric acid (HCl) with two tablets of 12,100 Lycopodium tracer spores (each) for 

approximately three to five minutes. After HCl digestion finished dissolving the Lycopodium 

tablets, disaggregating the sample, and eliminating any carbonates, each sample was wet sieved 

through a 150 micron mesh screen. The portion caught in the screen was set aside to dry and 

collected for macroscopic analysis. Particles small enough to pass through the sieve were 

consolidated and left in 50 ml plastic test tubes to digest overnight in 48% hydrofluoric acid (HF) 

in order to eliminate any remaining silicates from the sieved sample. 

  Following HF digestion, samples were thoroughly rinsed, transferred to 12 ml glass test 

tubes and then processed in 5% potassium hydroxide (KOH) for 10 minutes to remove humic 

acids. After rinsing the KOH, samples were decanted, vortexed, and then processed in glacial 

acetic acid (CH3CO2H) to remove all remaining water before acetolysis. Acetolysis destroys 

remaining organics in the sample as well as oxidizing the sporopollenin exine. This process 

eliminates any remaining cellular protoplasm, the cellulose inner pollen wall (intine), and outer 

proteins and lipids, increasing the clarity of identifying structural features (Traverse 1988). 

Acetolysis mix is composed of acetic anhydride (C4H6O3) and 95% sulfuric acid (H2SO4) at a 7:1 
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ratio. Once this volatile mixture was added, the test tubes were placed in boiling water for six to 

ten minutes and stirred every two minutes. Following rinsing, the acetylated samples could either 

be directly transferred into glycerin, or put through heavy density separation with zinc bromide 

(ZnBr) in order to separate the pollen from inorganic particles with a higher specific gravity that 

may have escaped digestion during processing. All samples were put through heavy density 

separation unless the undigested portion of the sample was unusually small relative to the other 

samples at this stage in processing or if there did not appear to be any heavier, inorganic particles 

left to separate.  

After processing, all samples were stored in vials with approximately 8 drops of glycerin 

until analysis. Samples were analyzed on semi-permanent glycerin slides under a Leitz Wetzlar 

733845 compound light microscope at magnifications of 250x for more rapid scanning, and 400x 

as necessary for specific identification. Samples were concurrently counted to a minimum of 200 

pollen grains or 300 Lycopodium tracer spores. Lycopodium tracer spores are added to a sample 

in a known amount so they can be used to approximate the total pollen density (grains per gram) 

and the density of each individual taxa (Aasen 1984; Faegri and Iverson 1989; Dean 1993; 

Reinhard 1993) using the following calculation:  

D = ((24200*n)/L)/w 

Where D = pollen density 
24200 is the total number of Lycopodium tracer spores added to the sample 
n = pollen total or individual taxon total 
L = Lycopodium counted 
w = dry weight in grams 
  

Some sample counts included more than 300 Lycopodium tracers if the pollen diversity 

was very high, and seemed unlikely to be captured in the course of counting only 300 tracer 
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spores. Furthermore, one sample (number 6) was not counted to 200 pollen grains or 300 

Lycopodium due to the incredible density of Ustilago maydis (corn smut) spores present in this 

sample (discussed further below). It was determined that counting enough slides to reach 200 

pollen grains (estimated at eight slides) would be a waste of both time and slide materials and 

that the overwhelming occurrence of U. maydis spores was the most significant data for this 

particular sample.  

A 200-grain pollen count is a general standard (Barkley 1934; Faegri and Iverson 1989; 

Geib and Heitman 2015, 77), however, Lycopodium counts are less standardized. For this 

project, I established the protocol cut-off counting at 300 Lycopodium because this was a 

standard used in a previous research project to which I contributed (the Fire and Humans in 

Resilient Ecosystems Project) (NSF Grant Award Number 1114898; Roos et al. 2015). Further, it 

seemed imprudent to spend many hours trying to reach 200 pollen grains in samples with very 

low pollen density since the primary goal of this study is to research economic pollen in 

paleofeces, which would presumably occur at higher densities (Dean 1993; Reinhard 1993).   

Pollen identification was aided by two standard identification keys, Pollen Analysis by 

Moore, Webb, and Collinson (1991) and How to Know Pollen and Spores by R.O. Kapp (1969), 

as well as the comparative collection housed at Southern Methodist University, some of my own 

comparative slides, and several online resources such as the University of Arizona’s Catalog of 

Internet Pollen and Spore Images (http://www.geo.arizona.edu/palynology/polonweb.html) and 

PalDat Palynological Database (www.paldat.org). 
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Ustilago maydis 

 Spores from various mosses, ferns, and fungi are as durable as pollen and are often (or even 

usually) found along with pollen during counting. Normally spores are not included in analysis 

or counts since, among other factors, they are produced in astonishingly high numbers, 

sometimes billions or even hundreds of billions per individual, (e.g., U. maydis can produce 

>200 billion teliospores per fruiting body) (Valverde et al. 1995, 202). However, in the course of 

this project I encountered Ustilago maydis in all but one sample, and often at incredibly high 

densities. U. maydis, commonly known as corn smut, is a fungal infection that exclusively 

affects maize. It is not harmful to humans, and is edible, nutritious, and ethnographically 

documented as a delicacy among some Native American groups (Juárez-Montiel et al. 2011; 

León-Ramírez et al. 2014; Valverde et al. 1995). In light of its potential economic relevance, and 

because U. maydis produces several orders of magnitude more spores than the any plant 

produces pollen, these spores were counted separately from pollen in order to estimate their 

density within a given sample. This was accomplished by calculating the ratio of U. maydis 

spores to Lycopodium, using a simultaneous count of U. maydis spores while counting to a 

minimum of three Lycopodium grains and 20 U. maydis spores. For samples where U. maydis 

was uncommon I counted to a minimum of 20 Lycopodium, instead. From these counts density 

was calculated using the same equation as was used for pollen. U. maydis content was also 

categorized based on these counts as absent, present (noted in the slide, but with a density of 

<10,000 spores/g), common (10,000-99,999 spores/g), very common (100,000-999,999 

spores/g), and ubiquitous (1,000,000+ spores/g).  
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Caveats Regarding Dietary Pollen and Spores  

Pollen data are obtained through counting, then calculating percentage and 

density/concentration values as described above. Percentages demonstrate relative abundance of 

taxa within a single sample, while concentration values are an extrapolation of the actual number 

of grains per gram. There are two major caveats regarding pollen data from paleofeces. First, 

unlike the macrofossil contents, not all pollen included in a sample necessarily have an economic 

association since pollen can be ingested through drinking water, contamination of unassociated 

foods, or even inhalation (Dean 1993; Reinhard 1993). Nonetheless, it can be determined 

whether the inclusion of a particular taxa likely resulted from direct dietary association or 

ambient presence based on several factors. High concentration values (grains/g) and the presence 

of clustered pollen grains that have yet to break away from each other for transport are both good 

indicators of direct economic association. Also, the regular occurrence of insect-transported 

pollen and/or pollen not common in the pollen rain of the local area could provide a good 

indication of economic association. Insect-borne pollen is not produced in as large amounts as 

wind-transported pollen (Faegri and Iversen 1989), so it would not be as likely to contaminate 

unassociated resources or be inhaled. All of these taphonomic factors were considered when 

interpreting the pollen results. 

The second major caveat of dietary palynology is that pollen passes through the digestive 

tract intermittently and gradually (Kelso 1976; Williams-Dean 1978). Although some pollen 

from a meal will pass completely through the digestive tract with the associated macrofossils, 

remnants of pollen from a given meal can continue to pass for weeks after ingestion in variable 

amounts (Kelso 1976; Williams-Dean 1978). Although the time since ingestion cannot be 

estimated, the fact that pollen found in paleofecal samples may have been ingested up to three 
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weeks prior should still be considered relevant when comparing pollen with macrofossil and 

DNA results from the same sample. 

Macrobotanical Analysis 

 The dried remains caught in the sieves used for pollen processing were labeled, bagged, and 

set aside for analysis. No further chemical processing was required for these samples. Analysis 

consisted of separating and weighing different macroscopic constituents, however, this process 

can be time consuming, sometimes taking several days or even weeks to segregate and identify. 

In order to conserve time and to create a more uniform base of comparison among the samples, 

macrobotanical remains recovered from each subsample were further subsampled. For this 

subsampling, approximately 1 cc of each sample was randomly chosen for complete analysis 

(including division by type and weighing of separate constituents), the rest of the sample was set 

aside to be separately weighed and visually scanned post hoc to assess representativeness of the 

subsample. Any taxa or constituents that did not appear in the subsample were noted at this time. 

The contents of the 1 cc sample were separated under a dissecting microscope and categorized 

(e.g. corn, pinyon hulls, Indian ricegrass seeds, charcoal, bone, feathers, insect parts and 

unidentified), each subgroup was weighed, and the percentage by weight of each type of 

constituent was calculated. A few samples were analyzed in their entirety, due to the fact that 

they were ≤ 1 cc in volume. The identification of the macrobotanical remains was accomplished 

by reference to a series of microscopic images taken of Karen Adams’ botanical collection at 

Crow Canyon Archaeological Center and a seed-based macrobotanical reference collection 

compiled by Ann Woosley for the Archaeology Research Program at Southern Methodist 

University. 
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One caveat of studying macrofossil remains is differential preservation and dietary 

incorporation of identifiable resource components. Some types of macrofossils are more resilient 

to destruction than others. For instance, certain seeds such as mustard seeds and cheno-ams have 

light, friable seed coats that are more likely to be chemically or mechanically destroyed than 

Indian ricegrass, pine nut hulls, or animal bone. On the other hand, seeds with light coats are 

more likely to be consumed whole, whereas pine nut hulls are not necessarily consumed with 

pine nuts. Furthermore, certain resources such as meat and fruit eaten without seeds are largely 

destroyed in the digestive tract and do not emerge as visually identifiable macrofossils. Due to 

this, the combination of pollen, macrobotanical, and DNA datasets are necessary to detect all the 

major components of the diet, but determinations of relative contribution can only be qualified as 

estimates due to factors such as differential preservation and lack of a means to reliably tie pollen 

densities to degree of seed, leaf, and fruit consumption.  

Other Analyses 

DNA Analysis 

DNA was extracted from 20 of the samples in this study and analyzed by Dr. Deborah 

Bolnick and her Ph.D. students Jaime Mata-Míguez and Rick W.A. Smith at The University of 

Texas at Austin. DNA extractions were performed using Rohland and Hofreiter’s (2007) silica 

protocol, with 0.4-1 g of each sample taken from the center of the paleofecal specimen to lessen 

the possibility of contamination. One or two fragments of human mitochondrial DNA (mtDNA) 

were then amplified from each sample and sequenced at the UT DNA Sequencing Facility, 

following Bolnick et al. (2012). Human mtDNA analysis was conducted in order to confirm that 

the samples were from humans and that they contained endogenous ancient DNA rather than 

modern contamination. Contamination would have likely yielded human mtDNA sequences not 
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found in Native American populations prior to European contact, since all of the researchers 

known to have handled these specimens are of European descent. In contrast, endogenous 

ancient DNA should belong to mitochondrial haplogroup A, B, C, D, or X2a, all of which were 

present in the founding Native American populations (Achilli et al. 2013; Forster et al. 1996; 

Torroni et al. 1993). The presence of nonhuman DNA from several possible dietary sources, was 

assessed through PCR using primers that targeted several taxa of interest: turkey, deer, and 

lagomorph mtDNA, as well as yucca and Cucurbitaceae (squash family) chloroplast DNA 

(cpDNA) (Table 4.1). Faunal and plant PCR products were sequenced at the UT DNA 

Sequencing Facility, and the source of each sequence was determined through comparison to 

sequences in the NIH GenBank genetic sequence database using a nucleotide BLAST search. 

Accepted procedures were followed at all stages of the analysis to minimize contamination and 

detect it if present (Bolnick et al. 2012). 

Table 4.1. PCR Primers and Associated Citations 

Primer Forward Reverse Citation 

Deer CCCCTAGATCACGACTTAAC TAGGTGAGATGGCCCTGAAGAAAG1  

Rabbit Rabbit-Forward-1 (RabCytB F) TGTGTCYGAKGTATAGTGT2 Adams et al. 
2011:809 

Turkey T15533F D-Loop 1 T15750R D-Loop 1 
Speller et al. 
2010, SI:12 

Squash CCCTCTTTGGCTCTACCCAT GAACGGACTAAGAGGGTCAGC  

Yucca CCAAATCGCGCTGCAAAAAC ATCCCCTCTCGTTTCATCTCT3  

1. Both the forward and reverse deer primers were designed by Jaime Mata-Míguez using primers described in 
Rosvold et al. 2012, 193 as templates.  

2. Rabbit-Forward-1 is RabCytB F in Adams et al. 2011, as described on page 809. Rabbit-Reverse-1 was designed 
by Jaime Mata-Míguez using primers from Adams et al. 2011 as templates. 

3. Cucurbitaceae and yucca primers were designed by Rick W.A. Smith to amplify a section of rp120-rps12 region 
and the trnT-trnL regions, respectively. 
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For the primers designed specifically for this project, the descriptions of PCR conditions 

were as follows. 

Deer 

Hold 1: 2 minutes at 95˚C 

60 cycles - 

Denature: 30 seconds at 95˚C,  

Anneal: 30 seconds and touchdown (initially 59˚C, and then -0.1˚C/cycle),  

Extension: 1 minute at 72˚C 

Hold 2: 3 minutes at 72˚C 

 

Rabbit  

Hold 1: 10 minutes at 95˚C 

60 cycles - 

Denature: 30 seconds at 94˚C,  

Anneal: 30 seconds at 53˚C, 

Extension: 1 minute at 72˚C 

Hold 2: 3 minutes at 72˚C 

 

Cucurbitaceae 

Hold 1: 4 minutes at 94˚C 

60 cycles - 

Denature: 30 seconds at 94˚C,  

Anneal: 30 seconds at 57˚C,  

Extension: 30 seconds at 72˚C  

Hold 2: 7 minutes at 72˚C 

Hold at 4 C indefinitely 

 

Yucca 

Initial Denaturation: 94 C for 4 minutes 
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60 cycles -  

Denature: 30 seconds at 94˚C,  

Anneal: 30 seconds at 60˚C,  

Extension: 30 seconds at 72˚C  

Hold 2: 7 minutes at 72˚C 

Hold at 4 C indefinitely 

 

AMS Dating 

  Although this midden was dated in previous studies, portions of the chronology were 

unresolved at the time of my analysis. Previous radiocarbon assays of the midden produced 

several contradictory dates from the same strata or even within the same layer. For these reasons, 

and to determine when the paleofeces incorporated into this study were deposited, eight of the 

macrobotanical samples from the paleofeces were selected for Accelerator Mass Spectrometry 

(AMS) dating by DirectAMS in Bothell, Washington. These eight specimens were chosen based 

on their distribution within the midden. Some were chosen in order to date layers that had not 

previously been dated, while others were chosen with the goal of clarifying stratigraphic 

associations and from layers with confusing results from previous radiocarbon dating. At least 

one sample was dated from all four of the midden strata, with one sample each from Strata A and 

C and three samples each from B and D. Specimen size was not given much consideration when 

choosing samples for AMS dating since only about 50 mg of sample was required for analysis. 

Dates were calibrated with the Cologne Radiocarbon Calibration and Paleoclimate Research 

Package (CalPal) using the CalPal-2007Hulu calibration curve based on speleothem records from 

Hulu Cave, China in conjunction with the GreenlandHulu timescale and Cariaco marine 14C age 

calibration (Weninger and Jöris 2008). 
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Comparative Data 

To determine the economic value of plants used by the BMII occupants of Turkey Pen 

Ruin, I used published return rates on plants (e.g., Barlow 2002; Ferguson 2007; Simms 1985). 

In addition to data derived by my own analyses, I also used comparative data derived from 

Aasen’s (1984) analyses and another coprolite study from sites in the surrounding area (Androy 

2003). However, Aasen’s data are not incorporated into the statistical analyses and results of this 

dissertation because her methods were not directly comparable with my own and her data are 

reported only in the form of percentages in-text and by a pollen percentage diagram in her thesis. 

Although general trends within her findings can be compared with the data reported here, 

without complete counts of her palynological data it would be problematic to add these data to 

my own tables and multivariate analyses. Aasen’s thesis does include raw macrofossil data, but 

since I was unable to assess inter-observer error, and her samples were not standardized to 1 cc, 

these findings are not included in my statistical analyses. Since Androy (2003) analyzed 

paleofeces from different sites, his data will also be included only as part of the discussion rather 

than the results and statistical analyses. Cumulatively, the findings from Aasen (1984), Androy 

(2003), and from this dissertation will contribute to a better understanding of dietary breadth at 

Turkey Pen Ruin and regionally during the BMII period.  

Statistical Analyses 

Results of the analyses described above were statistically analyzed using Microsoft 

Excel® and PolPal pollen analysis software. Palyonological, macroscopic, and aDNA data were 

separately organized into tables and bar charts. DNA data were represented only as the presence 

or absence of a taxon, but botanical data were organized according to percentage of each taxa 
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present in samples as well as weights for macrobotanical samples, and raw counts and densities 

for pollen.  

Pollen results were tabulated and analyzed based on 1) the taxa present, 2) associated 

season of bloom, and 3) by plant community association. The latter refers to the ecological 

setting where these plants are most commonly found. To explore the diversity of pollen taxa, I 

conducted one analysis using only the simple taxonomic designations assigned during the 

counting phase of the project (e.g., juniper, cheno-am, Sambucus racemosa). While a second set 

of analyses divided all of the taxa into four categories: cultigen, arboreal pollen, non-arboreal 

pollen, and aquatic pollen. These analyses assessed more common taxa (those which represented 

≥1% of the total pollen counts for all samples) individually, and combined less representative 

taxa according to their grouping, e.g., “other arboreal pollen.”  

In order to assess foraging patch-choice, I assigned individual plant taxa to some of the 

plant community associations as described in Chapter 3. While not all taxa could be reliably 

assigned to a given ecological setting, plant species that were dominant in a particular 

community (and not any others) were assigned to that designation, and taxa commonly found in 

only found in one vegetation zone were counted as evidence of exploitation of that patch. Five 

ecological patches were designated based on a combination of West’s (1978) vegetation 

community descriptions for Cedar Mesa and Daubenmire’s (1943) Southwestern altitudinal 

zonations: 1) pinyon-juniper woodland, 2) sage parkland and surrounding desert, 3) canyon 

bottom zones, 4) disturbed/field context, and 5) aquatic/wetland settings. The specific plants 

identified as evidence for use of each of these patches can be seen in Table 4.2. I did not include 

grasses in any of these zones because grasses can be commonly found in most of these ecological 

settings. 



 

81 
 

Table 4.2. Ecological Patches and Associated Plants 

Pinyon-Juniper Woodland pinyon/pine, juniper 
Sage Parkland and Desert Zones sage, greasewood, saltbush, creosote bush (Larrea 

tridentata), Acacia 
Canyon Bottom Zones willow, cottonwood, oak, boxelder (Acer negundo), 

mountain mahogany, hackberry, elm, snowberry, St. 
Johnswort (Hypericum spp.)  

Disturbed/Field Settings chenopodium, amaranth, mustards, asters, corn, squash, 
purslane 

Aquatic/Wetland Settings sedge, cattail, equisetum 
 

Although almost all of the plants associated with the various ecological vegetation zones 

in this area can occasionally be found in other zones, each zone is also dominated by one or a 

few species that should be common in the pollen and/or macrobotanical evidence if that 

particular ecological patch was regularly exploited. Further, none of the plants that are defining 

taxa of the ecological patches in this dissertation are common in any other vegetative zone. 

Ultimately, results of these analyses were then compared within and across datasets to determine 

correlations between taxa representation and potential patch-based or ecological strategies.  

Conclusion 

The processing methods used here were based on previous standards with adjustments to 

suit the needs of this particular project. All sample processing and analyses were carried out with 

the intent of efficiently gathering data, but also with a mind toward preserving portions of each 

sample for future research. The statistical analyses were chosen in order to best understand the 

pollen, macrobotanical, and DNA datasets individually, but also with comparative analysis in 

mind in order to interpret the correspondence of the independent lines of evidence examined in 

this project. 
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CHAPTER 5 

Hypotheses and Expectations 

My hypotheses apply concepts derived from human behavioral ecology (HBE) to explain 

maize reliance among the Basketmaker II people at Turkey Pen Ruin. Since maize is already 

established as a dietary staple at the site (Aasen 1984; Matson 1991, 90-6), my questions focus 

primarily on the consumption of uncultivated, putatively wild resources. Specifically, by 

applying diet-breadth and patch-choice models I test whether high levels of maize reliance were 

motivated by: 1) a pull toward high agricultural productivity, 2) a push to create a resource safety 

net due to reduced foraging productivity, and/or 3) a pull toward the field as a highly efficient 

ecological patch, from the combined use of domesticates and weedy plants. The differences 

between these hypotheses are subtle, but testable by evaluating data from paleofecal analysis, 

since each of these scenarios would result in different dietary breadths and the use of distinct sets 

of wild resources to supplement maize.  

According to diet-breadth model, individuals incorporate a greater variety of foods, 

including low-ranked resources, when encounter rates with high-ranking resources decrease 

(Charnov and Orians 1973, 39; Hames and Vickers 1982; Lupo 2007, 147-8; MacArthur and 

Pianka 1966, 608). So a pull toward agricultural productivity (hypothesis 1) should result in a 

more narrow diet breadth than a push to make ends meet (hypothesis 2). The third hypothesis for 

this project is centered on the relative importance of weedy plants growing in fields compared 

with plants that grow in more distant patches. Using patch-choice model, this hypothesis will test 
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whether the field patch, which includes crops, weedy plants, and certain animal species drawn to 

crop plants, could be more efficiently exploited than the surrounding natural patches, thereby 

encouraging an emphasis on farming by increasing the motivation to spend time in fields. This 

hypothesis is independent of 1 and 2, which are mutually exclusive. This hypothesis can be 

supported or disproved regardless of which of the first two hypotheses are supported. A positive 

result for this hypothesis in conjunction with hypothesis 1 would result in a strong focus on 

uncultivated, but field-friendly plants to the exclusion of low-ranked resources from other natural 

patches. Such a diet would be broader than expected under hypothesis 1, exclusively, and more 

ecologically narrow than expected for hypothesis 2. A positive result for this hypothesis in 

combination with hypothesis 2 would result in a broad diet overall, but with a strong emphasis 

on field-based resources.  

Although this chapter is focused on the three hypotheses and corresponding expectations 

tested by this research, it begins with a discussion of important caveats regarding the inadequacy 

of maize-based nutrition and how this might have impacted subsistence and foraging strategies at 

Cedar Mesa. Both the push and pull assumptions inherent to most of the theories regarding food 

production (described in Chapter 2), are predicated on the idea that horticulture and 

intensification of farming are ultimately driven by the productivity of wild resources relative to 

the crop(s) being grown (Barlow 2002; 2006; Childe 1951; Lee and DeVore 1968). If this is so, 

then wild resource use during the early farming period can reveal much about the evolution of 

the Puebloan agricultural economy and the impetus for the development of farming in the 

northern Southwest. Furthermore, since maize-based diets require augmentation to meet basic 

human nutritional needs, the supplemental nutrients (or lack thereof) provided by wild resources 

may be as relevant to understanding the productivity of local forage as caloric efficiency. 
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Why Mix Foraging and Farming?  

As discussed in Chapter 2, most applications of diet-breadth and patch-choice models use 

energetic currencies to measure productivity and assume that maximization of caloric efficiency 

is the overall goal. But for farmers who rely on a limited number of crops, calories may not be 

the only currency of value (Winterhalder and Kennett 2006, 13). Without bean horticulture, corn, 

which is limited in essential amino acids, vitamins, and minerals, was the only BMII staple crop. 

Although corn is a satisfactory staple in terms of macronutrients (carbohydrates, fat, protein), the 

relative proportions of carbohydrates to other nutrients are too high, and more importantly it 

lacks sufficient micronutrients (Table 5.1). Corn has approximately 8-10 g of protein per 100 g, 

but this protein is poor quality, because it is deficient in some essential amino acids (amino acids 

that cannot be synthesized by the human body and so must be obtained through diet) (Ellwood et 

al. 2012; Holstad 2010; Latham 1997). Several studies show that diets based only on corn are 

nutritionally incomplete (Bressani et al. 2002; Ellwood et al. 2012; Holstad 2010; Latham 1997). 

Humans cannot thrive without certain vitamins, minerals, and essential amino acids such as 

lysine, tryptophan, and methionine (Otten et al. 2006). The lack of vitamins and essential amino 

acids in corn would necessitate supplementation with wild resources to prevent ailments like 

lysine deficiency, scurvy, anemia, and folate deficiency (Table 5.1 and 5.2). Thus, maize farming 

would not eliminate the need for hunting and gathering regardless of its caloric efficiency.  

One potential nutritional problem among corn reliant farmers is vitamin C deficiency. 

Corn is harvested seasonally but has highly storable seeds that can serve as a dietary staple year-

round. Corn does not contain much vitamin C even when fresh (Table 5.1), and storage can 

degrade that small amount via oxidation (Stešková et al. 2006). This means that seasonal 
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deficiencies in vitamin C between harvests could be problematic for populations without 

alternative fresh supplementary resources.   

Note that although niacin and calcium are also poorly represented in corn, these deficits 

were likely mediated by nixtamalizing maize (discussed in Chapter 3). This process makes the 

niacin in maize digestively accessible and increases the calcium content of corn by 400-750% 

(Bressani et al. 2002; Ellwood et al. 2012; Holstad 2010). The absence of ceramics during this 

period means that limestone boiling, as documented on Cedar Mesa (Ellwood et al. 2012; 

Holstad 2010), was likely used for many resources that could not be cooked directly over a spit. 

Limestone boiling also releases methionine, tryptophan, and lysine from corn, but not 

consistently across maize varieties (Ellwood et al. 2012; Holstad 2010), or necessarily at levels 

that would eliminate the need for augmentation with other resources. However, since up to 89% 

of the required amount of methionine can be replaced by cysteine (Ball et al. 2006), it was not 

likely a limiting nutrient. 

Table 5.1. Selected Essential Nutrient Content for 100g Raw Corn with Corresponding EARs 

 Amino Acids Vitamins and Minerals 

 Isoleucine Lysine Tryptophan Vitamin A Vitamin C Folate Iron 

 g g g IU mg mg mg 

Corn, raw 0.129 0.137 0.023 187 6.8 42 0.52 

EAR (F) 0.925 1.887 0.259 1667 60 320 8.1 

EAR (M) 1.3 2.652 0.364 2083 75 320 6 

Estimated Average Requirement (EAR) – estimated average daily intake required by of half of the healthy 
individuals in a group, the amounts here are for adults 19-30. Amino Acid EARs = protein EARs x Dietary 
Reference Intakes for mg amino acid per g of protein. Information from the Food and Nutrition Board, Institute of 
Medicine National Academies.  
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Taking nutrition into consideration does not alter the predictions of the hypotheses since 

both high- and low-ranked resources can provide essential nutrients necessary to supplement 

maize-based nutrition (Table 5.2). However, determining whether or not people were able to 

obtain all necessary nutrients, rather than just calories, from available resources is important to 

my interpretations. If the evidence does not indicate BMII diet at Turkey Pen Ruin was 

nutritionally complete, then neither hypothesis 1 nor 3 can be supported. If, on the other hand, 

evidence indicates the diet was nutritionally complete, the adequacy of local forage can be 

inferred based on whether people could obtain the supplemental essential nutrients listed in 

Tables 5.1 and 5.2 via more or less favorable resources. If most of the wild resources 

supplementing maize-based nutrition are as high or higher ranked than maize, it would indicate a 

pull toward farming to raise overall subsistence efficiency, allowing people to drop lower return 

resources out of the diet, in support of hypothesis 1. Although it is not possible to determine the 

precise intake of a specific nutrient strictly from paleofecal analysis, it is possible to determine 

what resources may have supplied which nutrients based on their nutritional content and relative 

abundance across samples.  
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Table 5.2. Percentage of Essential Nutrients Compared to Raw Corn 
 

Isoleucine Lysine Tryptophan Vitamin A Vitamin C Folate Iron 

Agave*, cooked 0% 0% 0% 60% 4% 7% 683% 

Agave*, raw 11% 20% 35% 20% 59% 17% 346% 

Amaranth Leaves, boiled 79% 80% 117% 1481% 604% 136% 435% 

Amaranth Leaves, raw 92% 93% 135% 1560% 637% 202% 446% 

Amaranth Seeds, raw 451% 545% 787% 1% 62% 195% 1463% 

Quinoa*, cooked 122% 174% 226% 3% 0% 100% 287% 

Quinoa*, raw  391% 559% 726% 7% 0% 438% 879% 

Chenopodium leaves, raw 196% 258% 165% 6203% 1176% 71% 231% 

Chokecherries 0% 0% 0% 23% 10% 24% 77% 

Meat - Lamb Liver, raw 681% 804% 1026% 13161% 59% 548% 1417% 

Meat - Rabbit, boiled 1215% 2110% 1896% 0% 0% 19% 933% 

Meat - Venison, boiled 1011% 1801% 1170% 0% 0% 21% 787% 

Mustard Greens 0% 0% 0% 1617% 1029% 29% 315% 

Mustard Seed 917% 1346% 1113% 17% 104% 386% 1771% 

Pinyon, raw 349% 317% 635% 16% 29% 138% 588% 

Prickly Pear, raw 0% 0% 0% 23% 206% 14% 58% 

Purslane Leaves, raw 0% 0% 0% 706% 309% 29% 383% 

Squash Seeds, raw 993% 902% 2504% 9% 28% 138% 1696% 

Squash Seeds, roasted 981% 891% 2474% 4% 26% 136% 1552% 

Sunflower Seeds, raw 883% 684% 1513% 27% 21% 540% 1010% 

Sunflower Seeds, toasted 667% 517% 1143% 5% 21% 567% 1310% 

Corn, boiled 103% 103% 100% 1% 91% 48% 106% 

Corn, dried 376% 364% 409% 140% 0% 264% 502% 

*Agave used as a proxy for yucca, as well. Quinoa used as a proxy for chenopodium seeds. 

Corn Fungus 

People both consciously and subconsciously make decisions based on the potential 

economic benefit of pursuing a given resource against the opportunity cost—the lost opportunity 

of pursuing a different possible resource (Lupo 2007, 146; Stephens and Krebs 1986, 11). 



 

88 
 

Following the rationale outlined above, one such tradeoff is the choice to pursue a more 

nutritious resource in lieu of a resource with larger caloric returns. A potential example of this 

from Turkey Pen Ruin is the tolerance or perhaps encouragement of corn smut (Ustilago maydis) 

growth on maize plants even though it reduces harvests.  

Corn smut or corn fungus is a parasitic fungal infection that exclusively affects maize and 

teosinte (Valverde et al. 2015, 7). It grows into tumor-like galls on various parts of the plant, but 

is generally eaten when it grows in the actual kernels as opposed to the leaves or stems. Because 

corn smut takes its nutrients from the plant it infects, it can only grow on living plants and will 

not infect corn stores or plants that have already been harvested (Christensen 1963; Valverde et 

al. 2015). However, like corn, corn smut may be eaten fresh or dried and stored for later 

consumption. If growing on the leaves or stem, corn smut might be obvious and easily removed, 

although depending on its location on the stem this may be impossible without killing the plant. 

However, when an ear becomes infected it is obscured by the husk and is therefore not 

necessarily obvious until the gall is either mature or close to maturity. Because it is parasitic, a 

corn smut infection can diminish overall crop returns by an approximate average of 10%. 

However, under the right (or wrong) circumstances, infection rates of more susceptible landraces 

have been recorded as high as 60-80%, which would result in much higher crop losses, but such 

a high rate of infection is rare unless encouraged (Christensen 1963, 7; Pataky and Snetselaar 

2006). Crop losses are tied to, but do not perfectly coincide with infection rate. Losses can be 

direct through damage to infected ears, but also indirect through the lower output of plants that 

are infected, and in modern agribusiness through the contamination of farming equipment and by 

tarnishing uninfected ears (Christensen 1963; Pataky and Snetselaar 2006). Although U. maydis 

negatively impacts maize growth, it also fundamentally alters the nutritional value of the corn in 
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such a way that it is complementary to maize-based nutrition, but reduces caloric output. Corn 

smut contains high amounts of some of the very nutrients that corn lacks, such as lysine and 

folate (Juarez-Montiel et al. 2011; Valverde et al. 2015). If the growth of corn smut was 

encouraged or tolerated by the occupants at Turkey Pen Ruin it may indicate that the population 

was more constrained by a lack of nutrients, than calories.  

Since corn smut can grow with or without encouragement, it may have been consumed 

incidentally (with corn), or intentionally to make up for a nutrient shortfall. Since it produces 

incredibly high numbers of microscopic spores (up to more than 200 billion per gall) (Valverde 

et al. 2012, 202), some could easily enter the digestive system even if the fungus itself was not 

being directly consumed. However, since corn smut is a visually obvious infection, and the galls 

could easily be avoided by those not wishing to consume it, high amounts of spores in the 

digestive system, with densities above that of the economic pollen present, would strongly 

indicate intentional consumption; spore densities below that of the economic pollen could more 

likely indicate incidental ingestion. Evidence for corn smut can provide an indication of how 

certain nutrients may have been obtained, and if it was commonly consumed, this would most 

strongly support hypothesis 3 (see below). Moreover, very common consumption could support 

encouragement of growth for this potentially important dietary supplement. 

Faunal Resources 

Faunal resources are generally the most energetically dense foods available in any given 

environment and would be an ideal source of protein and amino acids (Table 5.2 and 5.3). But 

previous research from Turkey Pen Ruin and other BMII sites on Cedar Mesa suggests that these 

populations did not commonly consume meat (Aasen 1984; Chisholm and Matson 1994; Coltrain 

et al. 2007; Coltrain and Janetski 2013; Matson and Chisholm 1991). Some researchers even 
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argue that the BMII inhabitants of Turkey Pen Ruin were practically vegetarian (Matson and 

Chisholm 1991). Although Turkey Pen Ruin is one of the earliest sites of turkey husbandry in the 

Southwest (Lipe et al. 2016, 98-101; Nott 2010; Speller et al. 2010), research suggests these 

animals were not being used as food, but were raised exclusively for secondary products 

especially feathers that were used to make blankets and robes and that they potentially held some 

sort of ritual significance (Cooper et al. 2016; Lipe et al. 2016, 100).  

Table 5.3. Local Faunal Resources at Cedar Mesa and Their Caloric Return Rates 

Resources Scientific names Kcal/hr. 
Deer Odocoileus hemionus  17,971-31,450 
Bighorn Sheep Ovis canadensis 17,971-31,450 
Pronghorn Antilocapra americana 15,725-31,450 
Lagomorphs Sylvilagus auduboni & 

Lepus spp. 
8,983-15,400 (Encounter) 
415-4,243 (Trapping) 

Turkey Meleagris gallopavo spp.  1,700-5,200** 
Rodent (trapping) Various 468-2,340 

**For turkey, the amounts listed are estimates based on return rates for encounter hunting similarly sized fowl, 
including Canada geese, eider duck and general water fowl (see Ugan 2005: Table 1).  

 

Since lagomorphs are not as high-ranked as larger-sized prey such as deer using 

traditional, atlatl hunting, use of rabbit could indicate a low occurrence of higher ranked big 

game, particularly since methods of capture used during BMII such as snares and nets actually 

decrease the caloric returns of these resources (Matson 1991, 29; Ugan 2005). However, 

lagomorphs are still a higher return resource than local plant resources when hunted upon 

encounter, so regular inclusion of game meat (large or small) would indicate a productive 

environment. Furthermore, when hunted in large drives lagomorphs have return rates 

disproportionally high for their body size (Schmitt et al. 2004, 93; Simms 1987). However, as 

shown in Table 5.4a, the returns for trapping range from very low to only moderately high. The 
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effort put into checking traps across multiple locations greatly decreases these returns (Ugan 

2005). Garden hunting and trapping could reduce the travel costs associated with that effort. 

Hypothesis 1 – A Pull toward Food Production 

Hypothesis 1 is based on the traditional assumption that foragers are drawn to adopt and 

increase their investment in agriculture by greater energetic return rates of domesticated 

resources, even when ideal foraging conditions prevail. This hypothesis assumes that food 

production is adopted and intensified because mixed farming and foraging is a more efficient 

means of subsistence than wild resource procurement, alone. However, this does not necessarily 

mean that farming is more efficient than all wild resources, rather farming is assumed to be more 

efficient than average foraging returns. Here I propose that BMII people increased their reliance 

on farming because it produced higher yields than many regularly accessible wild resources, and 

thereby raised mean subsistence returns resulting in the exclusion of lower ranked resources 

from the diet. This reasoning leads to the following hypothesis. 

H1. If BMII peoples increased their reliance on maize farming  because it was highly 

efficient, then the diet breadth should be narrow—exclusively focused on cultigens and 

high-ranked wild resources with returns equal to or higher than simple maize farming 

(Table 5.4a and b).  

If adding cultigens to their subsistence strategy increased efficiency to a level that 

allowed people to focus supplemental foraging efforts on high-return resources, this should be 

reflected in a narrow dietary breadth apparent in paleofecal contents. Here “narrow” dietary 

breadth does not indicate reliance on only a few resources, but means that the diet should narrow 

toward the higher end of the energetic spectrum (Winterhalder 1981). At Turkey Pen Ruin, the 
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diet should include high-ranked wild resources such as wild game, pine nuts (Pinus edulis), tansy 

mustard (Descurainia spp.), and bitterroot (Lewisia rediviva), with very little or no inclusion of 

low-ranked wild plants such as Indian ricegrass (Achnatherum/Oryzopsis hymenoides), dropseed, 

chenopodium, and amaranth (cheno-ams) (Table 5.4a and b). 

Table 5.4a. Comparison of Caloric Return Rates for Selected Resources on the Colorado Plateau  

FORAGED RESOURCES 
SIMMS 1985, 

1987 
DIEHL 
1997 

BARLOW 
2002 

UGAN 
2005 

FERGUSON 
2007 

RILEY 
2012 

DEER & BIGHORN SHEEP 17,971-31,450      

PRONGHORN 15,725-31,450      

LAGOMORPHS 
(ENCOUNTER) 

8983-15,400      

LAGOMORPHS (TRAPPING)    415-4243   

TYPHA LATIFOLIA 
(CATTAIL) POLLEN 

2750-9360      

RODENT (TRAPPING)    468-2340   

PINE NUTS 841-1408+  1200-1700    

QUERCUS GAMBELLI 
ACORNS 

1488      

OPUNTIA (CACTUS) FRUIT      1394* 

DESCURAINIA SPP. (TANSY 
MUSTARD) 

1307 477 900-1300    

LEWISIA REDIVIVA 
(BITTERROOT) 

1237      

ATRIPLEX SPP. (SALTBUSH) 1033-1200      

AGAVE      1014* 

SUNFLOWER SEEDS 467-504  300-900    

POA SPP. (GRASS) SEEDS 418-491      

INDIAN RICEGRASS 301-392  300-900    

LEPIDIUM SPP. 
(PEPPERWEED) 

537      
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CHENO-AMS  497   165-370  

SPOROBOLUS SPP. 
(DROPSEED) 

  100-300    

CAREX SPP. (SEDGE SEEDS) 202      

ALLIUM SPP. (ONION)      111* 

*Maximum rate of return. Post-encounter return rates are based on reported caloric gains (kcal/hr.) required to 
pursue, collect, and process each resource; search times are not included. This list is not inclusive of all possible 
resources at Cedar Mesa, but includes those for which I could find calculated return rates.  

Table 5.4b. Caloric Return Rates for Maize Farming 

MAIZE PRODUCTION KCAL/HR. 
SIMPLE HORTICULTURE 1300-1700 
SLASH-AND-BURN 1100-1500 
TYPICAL AGRICULTURE 100-1100 
INTENSIVE AGRICULTURE 50-350 

Simple horticulture defined as plant and harvest (investment of approx. 50 hr./acre); slash-and-burn (investment 
of approx. 200 hr./acre); typical subsistence agriculture (approx. 400 hr./acre); intensive agriculture (including 
soil preparation, weeding, and activities throughout the growing season, investment of approx. 800 hr./acre). These 
return rates, obtained through studies of modern farmers in Central America, include food processing times. Returns 
from Barlow 2002. 

 

Hypothesis 2 – A Push toward Food Production 

Hypothesis 2 is predicated on the assumption that farming is less efficient than foraging 

and is only adopted and intensified when high-return wild resources become less available on the 

landscape, whether due to anthropogenic processes such as over exploitation or natural processes 

including climate change (Barlow 2002; 2006; Cordell and Gumerman 2006). This hypothesis 

proposes that resource depression (decreased encounter rates with high-ranked resources) pushed 

BMII peoples to increase their dependence on cultigens. 

 H2. If the focus on food production increased in response to diminished occurrence of 

high-value resources, then I expect a broad diet including low-ranking wild resources, 

indicative of intensified foraging to supplement maize-based nutrition (Table 5.1, 5.2, 

and 5.4a). 
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Assuming that BMII maize farming had return rates between 1100 and 1700 kcal/hr. 

(after Barlow 2002), people should only pursue wild resources at similar or higher rates of return 

under ideal foraging conditions and should not pursue resources that would lower the average 

rate of returns. If maize farming was adopted and intensified because the availability of high 

ranked wild resources was declining, then average foraging returns would have been lower than 

1100-1700 kcal/hr. In this case, wild resources brought into the diet to supplement maize will 

include lower ranked resources such as Indian ricegrass, cheno-ams, sedge seeds (Carex spp.), 

dropseed, and sunflower seed (Helianthus annuus). These foods would not be included in the 

diet if higher value resources were available. If people regularly supplemented maize-based 

nutrition with low ranking wild resources, then overall foraging conditions at Cedar Mesa were 

not ideal and perhaps inadequate without farming. Furthermore, if one or more of the nutrients 

required to supplement maize (see Table 5.1 and 2) does not appear in the diet, then that would 

be strong evidence against ideal foraging conditions on Cedar Mesa. Low inclusion of high-

return meat packages such as deer and bighorn sheep (Ovis canadensis) would support a push 

toward creating a resource safety net using farming, but only if high-return plant resources are 

also not commonly found. 

During the Paleolithic and Archaic periods, prior to the advent of agriculture, there is 

little evidence for the occupation of Cedar Mesa, possibly because it was a naturally unfavorable 

environment for hunting, foraging, or both (Matson 1991, 92, 220). If this is true then it is also 

possible that high value resources were unavailable during the BMII period, and could explain 

why large game animals comprise a seemingly small contribution to the diet (Matson 1991, 92, 

221-3). Movement into this area during the late BMII period may indicate population growth 

leading to expansion from more preferred adjacent territory. This would be consistent with 
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demographic mortuary data indicating that the BMII period was a time of increasing population 

in the Northern San Juan/Four Corners Region (Kohler and Reese 2012). Furthermore, as 

described in Chapter 3, there is some evidence for drought in this area during the BMII.  

Regardless of the cause, resource depression or low occurrence of high-return resources should 

result in an increased diet breadth (Broughton 1999; Broughton et al. 2010) detectable in 

paleofecal analysis.  

Hypothesis 3 – The Field Patch 

Instead of focusing strictly on diet breadth, hypothesis 3 emphasizes patch choice. This 

hypothesis tests whether plants and animals that naturally invade fields may have encouraged an 

increased focus on farming activities. Horticultural activities (including clearing and burning) 

often stimulate localized growth of uncultivated plants, so that successional colonizers that thrive 

in disturbed contexts tend to grow in greater densities in fallow/abandoned fields than in non-

anthropogenic habitats (Adams 2004, 176; Ford 1984; 2000). I propose that these plants may 

have favorably enhanced the returns of food production during BMII times by increasing the 

marginal values of farming investments. The growth of nutritious disturbance plants (such as 

purslane and amaranth) in working and fallow maize fields may have provided an incentive for 

farmers to focus greater attention on this newly created patch and incorporate plants colonizing 

their fields into the diet along with corn and squash.  

H3. If the combined concentration of disturbance plants with cultigens increased overall 

subsistence efficiency of fields above the average efficiency for other ecological patches, 

then the resources growing in that patch should become a large focus of the diet.  
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Although this hypothesis is based in niche construction—the idea that organisms impact 

their environment in ways that influence their evolution (Odling-Smee et al. 1996)—in order to 

test it I apply the tenants of patch-choice model (Charnov 1976; Charnov et al. 1976; Charnov 

and Orians 1973; MacArthur and Pianka 1966). Patch-choice model is premised on the fact that 

resources do not occur randomly across the landscape, but often occur in patches (Charnov 1976; 

Charnov et al. 1976; Charnov and Orians 1973; MacArthur and Pianka 1966). Here I focus on an 

anthropogenic patch—the field setting—relative to other local ecological patches such as 

pinyon-juniper woodland. I argue that the added value of non-domesticated plants associated 

with fields increased the returns of food production activities by making the fields and 

surrounding area into a new kind of patch (i.e., the field patch) that contained cultigens and wild 

resources, which complement a maize-based diet and could be exploited before or after harvest, 

and from fields left fallow. Although this hypothesis does not offer an explanation for the initial 

adoption of farming, it can explain the increasing emphasis placed on farming during the BMII 

period. Given that this population likely brought farming with them to Cedar Mesa, their initial 

adoption of agriculture took place elsewhere and presumably they would have come to Cedar 

Mesa with prior knowledge of this patch.  

If this hypothesis is correct, then weedy disturbance plants such as purslane, cheno-ams, 

asters, and members of the family Brassicaceae should figure prominently in the diet as a 

complement to maize (Table 5.5). Further, if this hypothesis is correct and hypothesis 2 is 

incorrect, then there should be very little to no inclusion of low-ranked, wild resources that do 

not thrive in disturbed/field contexts such as sagebrush, juniper, chokecherry (Prunus 

virginiana), dropseed, and Indian ricegrass. There may be greater evidence for animals that can 

be easily exploited close to agricultural fields such as cottontail and deer, rather than animals like 
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bighorn sheep that shy away from anthropogenic landscapes (Adams 2004; Ford 1984; Szuter 

1989).  

Encouragement of corn smut growth and its inclusion in the diet would also support this 

hypothesis. Since corn smut meets some of the nutritional needs not met by corn, regular 

consumption of corn smut could support greater reliance on fields for both staple foods and 

supplemental nutrients. Table 5.5 includes a list and description of annual disturbance plants that 

are native to the Four Corners and are often found in fields. These plants are likely to grow in 

fields whether or not they are purposely planted since they are successional colonizers that 

rapidly take root where other plants have been removed or have not yet grown, and are capable 

of withstanding repeated disturbance (Liebman et al. 2001). Part of the appeal of the field patch 

may have been its sustainability, since colonizing disturbance plants characteristically replenish 

their numbers rapidly (Baker 1965; 1974).  

Indian ricegrass is sometimes associated with disturbed contexts, but it requires well-

drained sandy soils (Hurst et al. 2011; Minnis 2000; Ogle et al. 2013; Tirmenstein 1999), and so 

is unlikely to be found in well-watered corn fields, and is not considered as part of the field 

patch. Furthermore, Indian ricegrass grows in abundance in areas of Grand Gulch and other parts 

of Cedar Mesa that are not associated with fields and human disturbance. Although certain 

species of grass are commonly associated with the field patch, Indian ricegrass was most 

commonly found by Kate Aasen (1984). If my results also show that Indian ricegrass was 

commonly consumed, these findings would offer greater support for hypothesis 2, rather than 

this hypothesis.  

If hypothesis 3 is incorrect, and the inclusion of disturbance resources in fields had little 

impact on BMII subsistence at Turkey Pen Ruin, then these plants will likely be uncommon 
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dietary inclusions. Mustard is a high-return weedy disturbance plant that might still feature 

prominently in the diet even if this hypothesis is unsupported. Also, if these resources are less 

common than other lower-return plant resources not associated with the field patch, such as 

sedge and dropseed, this would support hypothesis 2, instead of 3. This prediction of a 

technically broad diet with narrow focus allows a positive result of this hypothesis to be 

distinguished from a result supporting hypothesis 1 or 2, exclusively.  

The complementary use of weedy disturbance plants in agricultural fields proposed here 

is not without precedence in the ethnographic record. The Tarahumara of northern Mexico eat 

weedy plants such as amaranth, chenopodium, purslane, and wild mustard greens that grow in 

and around fields as a supplement to agricultural resources (Bye 1979; 2000; Kahl 1987; Minnis 

2000). Studies show that the Tarahumara meet or exceed daily recommended intakes of essential 

nutrients with a largely plant-based diet centered on corn, beans, and quelites (wild greens that 

grow in the fields) (Cerqueira et al. 1979). Although the people of Turkey Pen Ruin did not have 

bean horticulture, their diet otherwise may have been remarkably similar to the modern 

Tarahumara diet, since they also exhibited low meat intake and high dependence on plants for 

protein and nutrients to supplement corn (Aasen 1984; Matson 1991; Matson and Chisholm 

1991). Furthermore, the quelites used by the Tarahumara are some of the same genera (e.g., 

Amaranthus and Portulaca) and species that may have been important to the inhabitants of 

Turkey Pen Ruin, both for nutritious greens and high-protein seeds, and are some of the same 

plants that have been recorded as being important among later Puebloan peoples (Aasen 1984; 

Huckell and Toll 2004; Hurst et al. 2011). 
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Table 5.5. Plants Native to Cedar Mesa Commonly Associated with Field Settings 

Family Genus species Common Name Pollination 

Asteraceae Helianthus annuus Sunflower Zoophilous 

Asteraceae  Other Asters Both 

Chenopodiaceae Chenopodium spp. Goosefoot Anemophilous 

Amaranthaceae Amaranth spp. Pigweed Anemophilous 

Portulacaceae Portulaca/Talinum spp. Purslanes Zoophilous 

Brassicaceae Descurainia spp. Tansy Mustard Zoophilous 

Brassicaceae Lepidium spp. Pepperweed Zoophilous 

Cleomaceae Cleome spp. Beeweed Zoophilous/Self 

See Table 5.4a for associated return rates of plants listed in bold. I was unable to find return rates associated with 
purslane, but regarding the consumption of leaves, although nutritious (an excellent source of vitamin A, C, etc.), 
they are very low in calories, so the return rates are low even though little harvesting and processing effort is 
required (Hollenbach 2009, 209).  

Disturbance plants have also been adopted as cultigens in some contexts. For example 

Helbaek (1960) proposed that barley was likely first cultivated in the Levant due to its propensity 

to grow as a weed within wheat fields. Amaranth and chenopodium are both weedy disturbance 

plants that were farmed and cultivated elsewhere in the Americas (Das 2014; Heiser and Nelson 

1974; Piperno 2011). Furthermore, it has been suggested by some scholars that people during the 

Grand Gulch Phase of BMII began cultivating weedy annuals (e.g., Hurst et al. 2011, 96), 

although this cannot be proved using paleofecal evidence. 

Time invested in farming is often tied to marginal returns, meaning initial and continual 

labor investments in the fields (such as watering and weeding) lead to a better harvest at a later 

time, but do not have an immediate payoff  (Barlow 2006; Phillips 2009). The presence of weedy 

plants can add benefits to maize farming by providing a complementary short-term payoff to the 

long-term investment of field cultivation. Pioneer plants that naturally grow in disturbed soil can 

be incorporated into the diet through normal gardening tasks that people do anyway. If this 
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model is correct, it implies that foraging and farming activities can be conducted simultaneously 

and are not mutually exclusive activities as many models assume (Barlow 2006). If weeding is 

also foraging then a person can simultaneously forage for immediate returns, while increasing 

their marginal returns for later harvest. If foraged resources are part of the same resource patch 

as the cultigens, then people can harvest wild plants while concomitantly caring for or harvesting 

their cultivated crops; in essence, weeding is foraging. Furthermore, search and travel costs can 

be reduced if a farmer is foraging in the fields he or she already tends. 

Food production can create a desirable patch because it provides a means by which patch 

renewal can be controlled thereby creating a unique opportunity. People can control the location 

of a field and some, but not all, of its contents. Some weeds can be a nuisance and need to be 

eliminated, but edible weeds are beneficial because they grow naturally and do not require 

maintenance. Since pioneer plant growth depends primarily on increased sun exposure, weedy 

annuals will grow in disturbed field settings created by simple horticulture, slash-and-burn 

farming, or intensified agriculture. Furthermore, disturbance plants can grow in fields that are in 

current use or in areas that are fallow. Although maize has high demands for soil nutrients, some 

local perennial pioneer plants, such as New Mexico bird’s-foot trefoil/deervetch (Lotus 

plebeius), are legumes that fix nitrogen (Gage 2004; Masson-Boivin et al. 2009). Although 

mildly toxic, the young seeds pods of this plant can be eaten in small amounts (Kunkel 1984). 

This plant and others like it would be particularly beneficial for soil enrichment during fallow 

periods. Amaranth, on the other hand, is a nitrate accumulator that can bring nitrogen up from 

deep in the soil also making it more accessible for other plants (McMahon 2005). Legumes and 

amaranth are both considered good companion plants for corn, and expand the resources in the 

fields without negatively impacting harvests (McMahon 2005). Among the Tarahumara, for 
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example, disturbance plants are harvested prior to maturity, leading some scholars to argue that 

the timing is calculated to avoid competition with maize plants (Blanco and Hernandez X 1972, 

as cited in Bye 1981; Bye 2000, 207; Kahl 1987; Minnis 2000). For example, Blanco and 

Hernandez X (1972) demonstrated that quelites such as amaranth and asters, which have shallow 

root systems, did not begin to compete with deeper-rooted maize plants for resources until 

reaching maturity, so that harvesting them prior to this (at around 6-8 weeks into maize growth) 

allows them to grow as long as possible without impacting the eventual maize harvest.  

Conclusion 

Hypotheses 1 and 2 are mutually exclusive since one is premised on a draw toward 

farming even in times of high environmental productivity and the other is couched in 

environmental degradation and instability. However, either of these hypotheses could be 

supported alongside hypothesis 3. Hypothesis 1 is centered an agricultural adoption eliminating 

the need for low-return resources. If this hypothesis and hypothesis 3 are both correct, then it 

should result in a diet with high-return wild resources complemented by field-based resources, to 

the exclusion of low-return wild resources. Hypothesis 2 explains that the adoption of agriculture 

and increasing focus on farming was a result of a need to supplement environmental 

circumstances that were not ideal. Hypothesis 3 is focused on how fields as larger patches could 

provide higher returns and greater nutritional balance than the surrounding environment by 

foraging for weedy plants that naturally grow in disturbed areas to supplement corn. Further, the 

inclusions of these plants increases the marginal returns of field maintenance, because harvesting 

them can be done through weeding, which increases future maize growth/output. So both of 

these hypotheses could be supported in combination if people were pushed to increase their 

reliance on agriculture to augment lacking environmental resources, while simultaneously 
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coming to rely on the ecological advantages created by disturbance patches. This would result in 

a high focus on field-based resources complemented by high and low-ranked resources from 

other patches. A result supporting both hypotheses 2 and 3 would include some low-ranked 

resources from other patches, but with a clear dependence on the weedy disturbance plants to 

meet nutritional or caloric needs in supplementing maize farming.  

If traditional assumptions are correct that dependence on agriculture arose from a draw to 

farming due to its high efficiency, that should be reflected in a narrow dietary breadth focused 

only on cultigens and high-ranking wild resources. Opposing models suggest that farming 

developed in response to resource depression, as a supplement to foraging that was otherwise 

generally lucrative. Under this model diet should be broader and regularly include low-ranked 

wild resources. Finally, if resources drawn to disturbance from farming activity in fields 

increased the value of that patch, it should also increase subsistence focus on that patch. In this 

case, I expect a focus on resources associated with that particular patch, that either includes only 

higher-ranked wild resources (supporting hypotheses 1 and 3), or still includes lower-ranked 

wild resources (supporting hypotheses 2 and 3). 
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CHAPTER 6 

Results and Analyses 

This chapter presents the tabulated pollen, macrobotanical, DNA, and AMS data. While 

Chapter 7 discusses the interpretations and significance of these findings in relation to 

archaeological contexts, this chapter presents summary tables and describes important trends 

within the data. Data tables too extensive to be included in this chapter are found in Appendices 

A-D, which show the pollen, macrofossil, and aDNA data, respectively. Since pollen, 

macrofossil, and DNA datasets are not measured by the same metric (counts for pollen, weights 

for macrofossils, and presence/absence for DNA), these results and their analyses are broken into 

subsections according to dataset followed by a synthesis that examines patterns that cross-cut 

datasets.  

Palynological Results 

Counts and Percentages 

Pollen from 81 separate taxa were identified in the 44 samples analyzed for this project, 

but overall counts and individual specimens were generally dominated by only a few of these. 

Table 6.1 demonstrates that non-arboreal pollen dominate the counts for all of the samples 

combined. Two taxonomic categories—cheno-am and aster pollen—make up nearly 47% of the 

total pollen count, and generalized non-arboreal pollen types comprise nearly 70% of all pollen 
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identified. However, non-arboreal pollen are not uniformly distibuted across all samples (Figure 

6.1, Table 6.2), for instance, Populus spp. pollen is dominant in several specimens.

 Table 6.1. Combined Pollen Results Divided into Standard Taxonomic Groupings 

Category Type Total Count % Representation 

C
ul

tig
en

s Zea mays 76 1.16% 
Cucurbita 42 0.64% 

  118 1.81% 

A
rb

or
ea

l 

Populus 803 12.29% 
Pinus 153 2.34% 
Juniper 141 2.16% 
Acacia 129 1.97% 
Other arboreal 81 1.24% 

  1307 20.01% 

N
on

-A
rb

or
ea

l 

Cheno-am 1735 26.56% 
Asters 1297 19.86% 
Bird’s-foot trefoil 354 5.42% 
Mustard 317 4.85% 
Grass 292 4.47% 
Allium 195 2.99% 
Apiaceae 65 1.00% 
Other non-arboreal 302 4.62% 

  4557 69.76% 
Aquatic All aquatic 65 1.00% 
Unidentified   485 7.42% 

Pollen types with <1% total representation were grouped according to the larger associated plant type, (e.g., other 
arboreal pollen). Asters include ragweed, sunflower, and other members of Asteraceae, but do not include 
sagebrush. Although a member of the same family, sagebrush pollen yields a different interpretation than plants 
such as sunflower and ragweed, so was categorized separately. 

 

Some of the pollen taxa with high overall representation had median counts of zero, since 

they did not occur in the majority of samples, but were found at very high densities in a few. 

Examples of these taxa include bird’s-foot trefoil, mustard family, and corn pollen. Cottonwood 

pollen, was found in exactly half of the samples with a median representation of 0.2% and a 

mean representation of 8.1%. Grass, sagebrush, and pine, on the other hand, were found in most 

samples, but typically at much lower percentages/densities. Juniper had a slightly lower mean 
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percentage representation than pine, but had higher average densities and a much higher 

maximum representation in both percent and density (Table 6.2 and 6.4). Cheno-am pollen and 

aster pollen were found in almost every sample and generally at moderate to high percentage 

representation. Table 6.2 elucidates the variation between samples by showing the average 

percentage representation, medians, standard deviations, and maximum values for each of the 

major pollen types. Figure 6.1 visually displays the percentage distributions within each sample 

in a stacked bar chart. Together, Table 6.1, 6.2 and Figure 6.1 reveal important details regarding 

overall trends and variation between samples. 

Table 6.2. Pollen Taxa Distributions between Samples 

 

 

 % Representation Mean  St. Dev. Median Maximum 

Cultigens 
Zea mays 1.16% 2.7% 0 14.71% 
Squash 0.65% 2.0% 0 9.52% 

N
on

-a
rb

or
ea

l 

Cheno-Am 25.73% 25.2% 19.4% 86.80% 
Asters 18.07% 25.4% 9.3% 100% 
Mustard 4.23% 12.0% 0 50.71% 
Cleome 0.43% 1.7% 0 10.58% 
Apiaceae 1.38% 7.3% 0 48.48% 
Lotus spp. 4.26% 15.2% 0 94.58% 
Allium 2.52% 11.1% 0 62.19% 
Grass 4.09% 10.3% 1.0% 59.05% 
Artemisia 1.44% 2.7% 0.5% 13.79% 
Other non-arboreal 4.87% 7.3% 2.4% 32.14% 

A
rb

or
ea

l Pine 3.99% 4.9% 2.0% 20.69% 
Juniper 3.81% 8.0% 1.4% 43.06% 
Populus 8.10% 22.7% 0.2% 95.32% 
Acacia 1.55% 9.2% 0 61.08% 
Other arboreal 2.01% 3.7% 0.8% 20% 

Aquatic All aquatic 1.15% 1.6% 0.7% 6.90% 
 Unidentified 10.51% 8.5% 9.0% 40% 
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Figure 6.1. Pollen percentages for major taxa by sample. 
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Pollen Densities 

Pollen density (estimated number of grains/g) varied tremendously across samples with a 

range of 274 – 4,068,949 grains/g., but most samples tended to fall mostly toward the lower end 

of that spectrum (Figure 6.2, Table 6.3). However, one very densely populated specimen skewed 

the results so greatly that it more than doubled the mean. Including sample 18, the average 

density across all specimens is 163,702 grains/g, but excluding this specimen, the mean density 

drops to 72,882 grains/g. Total pollen counts, percentages, and densities from all samples can be 

found in Appendix B.  

 

Figure 6.2. Bar chart of pollen density by sample. 
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Table 6.3.  Pollen Densities Ordered Lowest to Highest 

 

Table 6.4. Statistics on Pollen Density by Taxa 

 Density (grains/g) Mean  St. Dev. Median Maximum 

Cultigens 
Zea mays 167 444 0 2365 
Squash 92 268 0 1502 

N
on

-a
rb

or
ea

l 

Cheno-Am 5,503 11,086 1,900 59,546 
Asters 38,285 234,582 549 1,558,243 
Mustard 2,251 7,848 0 43,910 
Cleome 82 500 0 3,320 
Apiaceae 442 1,797 0 10,768 
Lotus spp. 9,647 44,236 0 252,566 
Allium 261 1,001 0 5,026 
Grass 2,112 10,314 125 67,783 
Artemisia 95 146 35 657 
Other non-arboreal 2,220 6,882 149 30,023 

A
rb

or
ea

l Pine 346 402 214 1,860 
Juniper 982 4,403 159 29,273 
Populus 98,055 585,269 20 3,878,674 
Acacia 237 1,516 0 10,061 
Other arboreal 614 2,259 66 14,637 

Aquatic All aquatic 298 1,097 55 7,095 
 Unidentified 2,012 4,642 768 29,273 
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Analysis 

The overall pollen results are consistent with Aasen’s (1984) findings (Figure 6.3), but 

differ significantly from the general makeup of surface sample pollen collected from Cedar Mesa 

in the late 1970s (West 1978). Since soil samples from Cedar Mesa exhibit a higher arboreal to 

non-arboreal pollen ratio dominated by pine and juniper, the greater occurrence of non-arboreal 

pollen in paleofecal specimens likely indicates dietary choices rather than incidental ingestion 

related to environmental pollen distributions. In particular, the pollen taxa representations 

suggest that cheno-ams, asters, mustards, and cottonwood were regularly incorporated into the 

diet.  

 

Figure 6.3. Results from Aasen 1984. 

Aasen (1984, 35, Figure 7). Note: Ambrosia-type is a low-spine aster, Tubuliflorae is now known as Asteroideae 
and is a subfamily of Asteraceae, Gramineae is now Poaceae (grass), Cruciferae is now Brassicaceae, and 
Umbelliferae is now Apiaceae.  

 

The presence of clusters (naturally aggregated pollen grains from the same plant) in 

several specimens further supports direct consumption of the plants listed above. Since clusters 

disaggregate as pollen dries prior to natural transport (West 1978, 127), their incorporation into 

paleofeces suggests ingestion of pollen that was still attached to the plant. Clusters of cheno-am, 
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low-spine aster, cottonwood, pine, and mustard family pollen were all present. Furthermore, 

some of the mustard pollen grains identified were not yet fully developed. Consumption of these 

immature grains is unlikely to result from ingestion of ambient pollen since immature pollen is 

not naturally released by plants. Inclusion of under-developed grains can be linked to ingesting 

the plant directly or cooking with a portion of the plant that included unopened buds.  

The non-arboreal pollen results also generally agree with Aasen’s (1984) findings, except 

that the samples used in my analyses contain relatively lower amounts of Cleome and relatively 

higher amounts of mustard pollen. The arboreal pollen data, on the other hand, differ in several 

key ways from Aasen’s. Specifically, pollen from the genus Populus rather than pine, was the 

most abundant arboreal pollen overall, and comprised >10% of the total pollen counted (Table 

6.1). This is not because cottonwood pollen occurred in more samples than pine, but is instead 

driven by the overwhelming presence of cottonwood in a few samples (Figure 6.1).  

Pine pollen was pretty evenly spread across samples, but generally occurred in low 

frequencies. The highest percentage of pine pollen was from sample 1, in which pine was 20.7% 

of the counted pollen. However, sample 1 had a low overall pollen density, so that 20.7% was 

only comprised of six grains of pine pollen; for comparison, the maximum raw count of pine 

pollen for any sample was 16 grains in sample 23. In spite of its ubiquity across samples, only 

two samples (23 and 33) contained clusters of pine pollen. Since pine pollen is wind-blown and 

extremely common on Cedar Mesa (West 1978), but occurred at a maximum of only 16 grains in 

these samples, much of the pine pollen identified in these samples may have been incorporated 

by incidental ingestion of ambient pollen through inhalation or drinking water, rather than solely 

through direct ingestion of the associated plant. I would expect pollen primarily derived from an 

economic association to occur at high levels in some specimens and not to be evenly spread at 



 

111 
 

low levels. Although some of the pine present may have been ingested directly (particularly that 

in sample 23), the ubiquity of pine in the samples paired with low concentrations point toward 

incidental, rather than direct, ingestion.  

This contrasts markedly with the data for cottonwood pollen, which was found in only 

half of the paleofecal samples examined, but 10 of these 22 samples were characterized by only a 

single grain. The high values for both percentage representation and density were largely driven 

by four specimens that had counts of more than 100 cottonwood grains each, including one 

sample that contained 265 counted grains.  

Twenty-three of the 44 samples analyzed had density estimates below 10,000 grains/g, 

which is relatively low for paleofecal specimens (see Aasen 1984; Kelso 1976, 60-61; Reinhard 

et al. 1991 for comparison), but high compared with sub-surface archaeological soil samples 

from the area (West 1974, 59). Although only seven samples had estimated densities of more 

than 100,000 grains/g, two of these contained more than 1 million grains/g—extremely high 

concentration values. 

As indicated in Chapter 4, high densities (estimated number of grains/g) of specific 

pollen types from paleofecal samples often points toward direct consumption. In particular, high 

concentrations of zoophilous (insect-transported) pollen strongly indicates economic association 

since these grains are produced in lower numbers and are less likely to be inhaled or incorporated 

into drinking water (Bryant 1974; Reinhard and Bryant 1992). Pollen densities in paleofecal 

specimens can also inform on seasonal association, both through the bloom period of high-

concentration pollen, and by overall pollen density, where specimens with lower pollen density 

may be associated with seasons with low pollen counts. So the low median density values of 

these samples may reflect some of the samples coming from winter or early spring. 
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Pollen from known cultigens (corn and squash) is generally uncommon across specimens 

(Figure 6.1, Table 6.4, Appendix B). High representation of cultigen pollen (>1%), particularly 

corn, is strongly linked with low overall pollen density (<10,000 grains/g). To illustrate, samples 

with <1% cultigen pollen had mean density values of 247,181 grains/g, samples with >1% 

cultigen pollen had an average density of 17,923, and those with >3% cultigen pollen had an 

average density of only 7,737. Thus, high percentages of cultigen pollen may reflect fewer grains 

of competing pollen taxa inflating relative representation in some samples, rather than increased 

intake of cultigens (see Dean 1993). For example, sample 3 is 3.8% corn pollen and contains an 

estimated 149 grains/g of that pollen, where sample 5 has only 0.5% corn pollen, but with an 

estimated density of 2365 grains/g. Because pollen from squash is produced in low quantities, 

and both squash and maize pollen are unlikely to end up on the actual fruit that is ingested, it is 

possible for cultigen pollen to occur in very low concentrations even when corn and squash make 

a very large contribution to the diet, as seen in other paleofecal studies (Aasen 1984; Androy 

2003).  

Corn Fungus 

One of the unexpected findings of this research was the prevalence of Ustilago maydis 

(corn smut) spores (Table 6.5). Corn smut spores were identified in all but one of the specimens 

analyzed for this dissertation. Most contained spores at an estimated density of more than 50,000 

spores/g, and nearly half (20 samples) had estimated densities of >100,000 spores/g. These 

concentration values are higher on average and greatly exceed the maximum for pollen identified 

in the analysis. The highest estimated pollen density was 4,068,949 grains/g (Figure 6.2, Table 

6.3) and the highest U. maydis spore concentration was estimated at 187,064,976 per gram 

(Table 6.5).     
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 Table 6.5. Calculated Corn Smut Densities for All Samples  

Sample 
Corn 
Smut Lycopodium Weight (g) Categorization 

Calculated 
Density 

11 0 20 2.1025 Absent 0 

29 2 21 2.4467 

Present 

942 
40 2 22 1.5023 1,464 
36 2 20 1.4213 1,703 
31 8 20 4.3667 2,217 
42 3 20 1.1330 3,204 
41 4 20 1.4703 3,292 
27 16 37 2.0300 5,155 

43 10 20 1.1250 

Common 

10,756 
30 20 16 2.3137 13,074 
19 20 16 1.5945 18,971 
33 21 19 1.3957 19,165 
9 20 12 1.9055 21,167 
38 20 15 1.4490 22,268 
44 20 10 1.8633 25,975 
21 32 36 0.7316 29,403 
24 41 21 1.5213 31,057 
26 20 12 1.1498 35,079 
1 21 11 1.2158 38,001 
39 20 4 2.4000 50,417 
14 21 9 1.0345 54,584 
15 22 11 0.8195 59,060 
17 26 4 2.0450 76,919 
22 20 9 0.6625 81,174 

2 22 5 1.0638 

Very Common 

100,094 
18 20 5 0.8267 117,092 
23 40 4 2.0340 118,977 
7 20 3 1.2878 125,278 
12 29 5 1.0470 134,059 
4 25 3 1.2158 165,878 
10 54 4 1.8789 173,878 
3 23 3 1.0659 174,063 
25 29 3 1.2860 181,908 
5 44 5 1.1370 187,300 
34 64 5 0.9624 321,862 
20 20 4 0.3596 336,485 
35 130 6 1.1978 437,747 
16 81 4 0.6797 720,980 
32 104 7 0.4879 736,919 
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28 48 3 0.4383 883,413 

37 490 3 2.0967 

Ubiquitous 

1,885,215 
8 1170 5 1.2158 4,657,866 
13 1184 3 1.3333 7,163,648 
6 45000 4 1.4554 187,061,976 

Present- 1-10,000 spores/g, Common- 10,001-99,999 spores/g, Very Common- 100,000-999,999 spores/g, 
Ubiquitous- 1,000,000+ spores/g. 

 

Analysis 

Fungal spores in general are common inclusions on pollen slides, but are not directly 

incorporated into pollen counts since fungi produce such massive amounts of spores and spread 

them by such different means, as to render most comparisons with pollen meaningless (Faegri 

and Iversen 1989). Corn fungus, for instance, can produce approximately 200 billion spores per 

gall (fungal growth) (Valverde et al. 2012, 202). For this reason they are included in a separate 

section here and their estimated densities were calculated separately from that of the pollen, 

although using the same slides and a similar method. Although the inclusion of corn smut in 

paleofeces at Turkey Pen Ruin was noted by Karl Reinhard (Powers 1984, 99; Reinhard 1988, 

69), it was not previously identified as a dietary component during the BMII period, since 

Reinhard’s samples are unprovenienced and more likely associated with BMIII based on the 

inclusion of bean in some of them. The overwhelming presence of these spores in samples 6, 8, 

13, and 37, and its common occurrence throughout the specimens in this analysis strongly 

suggests that corn smut was purposely consumed. The potential economic and nutritional 

contribution of corn fungus is discussed at greater length in Chapter 7. 

Macrofossil Results 

Fourteen plant taxa and three broadly-defined faunal taxa (rodent, insect, and bird) were 

identified among the macroscopic remains, along with unidentified materials and items like 
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charcoal that could not be taxonomically categorized. Corn kernels were by far the most 

common macroscopic constituent; corn comprised nearly 70% of all macrofossils analyzed 

(Table 6.6, 6.7, Appendix C). Two specimens exclusively contained corn macrofossils and only 

one sample (sample 18) did not contain any (Figure 6.4). By weight, pine nut hulls were the 

second most common macrofossil identified, they were found in 12 out of the 44 samples 

analyzed. However, other lighter weight macrofossils such as cheno-am seeds were also 

recovered from a large portion of the samples. Cheno-am seeds were the second most common 

seed type identified and were found in 11 of the samples. 

Table 6.6. Macrofossil Representation for All Specimens Combined 

Category Type Weight (g) # of Samples % Representation 

Cultigens 
Corn 7.0764 43 69.17% 

Squash Seed 0.0091 2 0.09% 
Pine Pine Nuts 0.985 12 9.63% 

U
n

cu
lt

iv
at

ed
 S

ee
d

s 

Cheno-Am 0.4394 11 4.30% 
Sunflower 0.0542 7 0.53% 

Indian Ricegrass 0.0506 8 0.49% 
Mustard 0.0101 3 0.10% 

Dropseed 0.0041 7 0.04% 
Echinocereus 0.0003 1 0.00% 

Sphaeralcea digitata 0.0002 2 0.00% 
Artemisia 0.0001 1 0.00% 

M
is

c.
 P

la
n

t 
M

at
er

ia
l Purslane 0.3482 21 3.40% 

Plant Fiber 0.2708 27 2.65% 
Stems 0.111 16 1.08% 

Unknown Herb 0.0317 12 0.31% 
Unknown Fruit 0.018 2 0.18% 

Flower Parts 0.0125 5 0.12% 
Juniper Cone 0.0021 2 0.02% 

Equisetum Stem 0.0006 1 0.01% 

F
au

n
al

 Bone 0.0188 5 0.18% 
Insect 0.0018 7 0.02% 

Feather 0.0008 8 0.01% 

Other 
Charcoal 0.025 39 0.24% 

Unidentified 0.7597 34 7.43% 
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Seeds are usually the most identifiable macrobotanicals in paleofeces, but some of the 

herbaceous material was also readily identifiable and common. Although purslane only 

comprised 3.4% of the total analyzed macrofossil weight, it occurred in more specimens (21) 

than any other taxonomically identifiable resource except corn (Table 6.6).  

Table 6.7. Statistics for Macrofossil Weight by Taxa for All Specimens 

% Representation Mean St. Dev.  Median Maximum 
Corn 69.80% 28.0% 79.1% 100.0% 
Squash 0.1% 0.5% <0.1% 3.5% 
Pine Nuts 7.8% 16.0% <0.1% 59.1% 
Cheno-Am 4.7% 14.4% <0.1% 62.8% 
Mustard 0.1% 0.5% <0.1% 3.4% 
Sunflower 0.6% 2.7% <0.1% 16.4% 
Indian Ricegrass 0.7% 3.2% <0.1% 16.6% 
Dropseed 0.1% 0.3% <0.1% 2.1% 
Other Seeds <0.1% <0.1% <0.1% 0.2% 
Plant Fibers 3.7% 14.1% <0.1% 68.2% 
Stems 1.1% 2.4% <0.1% 9.1% 
Unknown Herb 0.6% 2.0% <0.1% 12.5% 
Purslane 3.4% 6.4% <0.1% 26.3% 
Juniper Cone <0.1% 0.1% <0.1% 0.4% 
Unknown Fruit 0.2% 1.2% <0.1% 7.7% 
Flower Parts 0.2% 0.8% <0.1% 4.7% 
Bone 0.2% 0.7% <0.1% 4.2% 
Feather <0.1% <0.1% <0.1% 0.1% 
Insect <0.1% 0.1% <0.1% 0.3% 
Charcoal 0.3% 0.3% 0.2% 1.4% 
Unidentified 6.5% 13.1% 1.8% 79.1% 

Note: Other seeds include hedgehog cactus (Echinocereus spp.), juniper globemallow (Sphaeralcea digitata), and 
sagebrush seeds.  

Macroscopic evidence of faunal resources was uncommon; bone fragments were found in 

only five samples, and only one of these fragments was identifiable—a distal rodent humerus 

from sample 15 (Figure 6.4, Figure 6.5). Although they comprised an insignificant portion of the 

weight, feathers were the most common faunal macrofossil identified, they were found in eight 

samples. Insect remains were identified in seven samples.  
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Figure 6.4. Macrofossil percentages by sample. 
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Figure 6.5. Images of the rodent humerus fragment, anterior view (left) and posterior view 
(right). 

 

Analysis 

The remains of cheno-am and purslane comprise less of the overall macrofossil weight, 

but their pervasiveness indicates that these two resources may have been eaten just as often, or 

more so, than pine nuts. Although weight differences among macrofossils may skew the percent 

representation of plant specimens, plants associated with heavier undigested fossils are also 

larger-sized resources that may make a more substantial caloric contribution when consumed. On 

the other hand, one potential representation problem with the macrofossil data is that neither 

Kate Aasen nor I were able to identify any actual pine nuts—only the hulls—and since the nuts 

can be eaten without the hulls, pine nuts may actually be under-represented in these samples.   

The physical conditions of macrofossils provide insight into how they may have been 

prepared. Cheno-am seed coats are commonly (though not always) fragmented and may have 

often been ground into a meal. Pine nut hulls are also fragmented, but are generally too large to 

have come from a processed paste or nut meal. Most likely pine nuts were consumed raw or 

lightly toasted. Based on the lack of any charring, purslane leaves were most likely eaten raw as 

a salad (see Appendix E) or boiled in a stew. Corn appears to have been eaten in any number of 
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ways: ground into meal, fresh off the cob, and even potentially popped based on the large, white 

starches stuck to some of the kernel hull fragments.  

All of the bones extracted from these samples were highly fragmented. Although only 

one of them could be identified to a taxonomic or specific anatomical association, the size and 

general shapes of the other fragments suggest they are likely bones from rodents, very small 

birds, or reptiles. The feathers from these samples are difficult to interpret and are not necessarily 

indicative of bird meat consumption. Most were barely visible to the naked eye, so their presence 

could have resulted from incidental ingestion at the site where turkeys were raised rather than 

through actual ingestion of turkey or bird meat. Insect remains indicate a similar scenario, all 

insect macrofossils found (mostly dermestid beetle larvae and unidentified carapace) were very 

small and therefore unlikely to have been purposely incorporated into the diet. These insects 

were probably consumed as a result of an infestation in food stores, particularly since none of the 

samples containing carapaces contained enough parts to indicate the inclusion of more than one 

insect.  

DNA Results 

  To help shed light on resources that may not be represented by pollen and macrobotanical 

evidence, dietary DNA was extracted and analyzed from 20 of the 44 specimens in this study. In 

order to confirm the human affinity of the specimens and to test for modern contamination after 

years of handling by researchers, all specimens were tested for human DNA. All specimens 

tested positive for human mitochondrial (mt)DNA that was associated with Native Americans or 

at least could not be ruled out as belonging to one of the five Native American mitochondrial 

haplogroups (A, B, C, D, or X2a) (Appendix D). 



 

120 
 

Fifteen out of 20 total samples tested positive for chloroplast (cp)DNA from yucca or 

squash, mtDNA from faunal resources, or both (Table 6.8). Yucca was the most common 

resource identified through DNA analysis. Although little pollen or macrofossil evidence for 

yucca consumption was found, yucca cpDNA amplified in 11 out of the 20 samples tested. 

Squash family (Cucurbitaceae) cpDNA was found in only three specimens, all three of which 

also contained yucca DNA.  

Only seven specimens yielded faunal DNA. All of the resources that were intentionally 

included in PCR analysis (turkey, rabbit, deer, yucca, and squash) were found in at least one 

specimen. However, three unexpected faunal resources were also discovered through PCR 

analysis. Dog (Canis familiaris) DNA was found in two samples via the cottontail PCR primers, 

and bighorn sheep and pronghorn (Antilocapra americana) amplified in three samples via the 

primers used to amplify deer DNA. Deer was the most common faunal resource identified and 

was found in six of the 20 samples tested. Notably, five out of the seven samples that tested 

positive for faunal DNA contained mtDNA of multiple species; the DNA of four distinct animal 

species was amplified from specimen 10, alone. Specimen 10 was also the only sample in which 

turkey DNA was identified.  
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Table 6.8. Combined Faunal and Plant DNA Results  

  Animal DNA Plant DNA 

Specimen Turkey Cottontail Dog Deer 
Bighorn 
Sheep Pronghorn Yucca Cucurbitaceae 

1             +   
2               + 
3             +   
4             +   
5             +   
6             +   
7   + + +     +   
8     + +     + + 
9                 

10 + +   +   +     
11                 
12             +   
13       + +       
14                 
15       + +   +   
16                 
17   +             
18                 
21             + + 
26       +     +   

TOTALS 1 3 2 6 2 1 11 3 
 

Analysis 

  Not all of the human DNA could be positively attributed to a specific haplogroup because 

some of the samples were too fragmentary, but this is not necessarily a negative result. This 

actually suggests that the DNA was very unlikely to be from modern contamination, since 

modern fragments would have been in better condition and easily attributable to a mitochondrial 

haplogroup (Allentoft et al. 2012). Despite years of handling by various researchers, these results 

indicate that modern contamination was negligible.  
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Lack of modern contamination does not exclude the possibility of contamination from 

within the midden, however, so the subsamples were carefully extracted from interior portions of 

the paleofecal specimens in order to minimize the chances of contaminant DNA. One indicator 

that contamination between specimens was not a problem is that turkey DNA was found in only 

one sample; since turkey feces, feathers, and even eggshells occurred throughout the midden 

(Aasen 1984, Powers 1984, Nott 2010), turkey was the most likely source of contamination. If 

turkey DNA had been found in many specimens, then contamination would have been the most 

parsimonious interpretation. Turkey was only identified in one sample, along with DNA from 

three other faunal species. The absence of turkey DNA from most of the samples, and its co-

occurrence with multiple other species in the sample from which it was recovered offers strong 

support for the validity of the DNA associations from these specimens. If the DNA arose from 

contamination, then turkey should have been the most common resource recovered from these 

analyses instead of yucca and deer.  

Synthesis of the Data  

The various difference and concordances between datasets are key to understanding how 

certain resources may have been incorporated into the diet. Inconsistent representation between 

the pollen, macrofossil, and DNA datasets highlights the importance of combined 

characterization techniques for the analysis of paleofecal matter. For example, the pollen and 

macrofossil data do not align regarding the relative importance of pine nuts in the diet. Although 

it is clear from the macrobotanical data that pine nuts were eaten and may even have been one of 

the more common resources included in the diet, the pollen data emphasize field-based 

disturbance resources such as cheno-ams instead. There are some co-occurrences of pine nut hull 

macrofossils and relatively high representation of pine pollen in samples 1, 3, 19, 20, and 40. 
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Samples 25 and 41, on the other hand, had very high percentages of pine nut macrofossils, but 

contained no pine pollen. Neither of the samples that contained clusters of pine pollen contained 

pine nut hulls. These conflicting results could arise from several different causes: 1) 

economically-associated pine pollen passed through the digestive tract at a slower rate than the 

macrofossils, 2) the ingestion of the nuts did not often result in concomitant ingestion of pollen, 

and/or 3) the presence of pollen was the result of incidental ingestion due to high environmental 

presence.  

Purslane provides a second example that is similar to pine nuts.  This taxa is represented 

primarily by leaves and not pollen. Purslane seeds were also absent from these samples, although 

Aasen (1984) did identify purslane seeds in one sample. This may indicate preferential harvest of 

leaves not consistent with bloom period and seed development.   

Yucca was identified in more than half of the DNA samples, but was not identified 

macroscopically and agave family pollen was found in only two samples. Ethnographic 

observations suggest that Native American populations (including the Hopi, Tewa, and Navajo) 

ate yucca fruit without seeds or as a paste, which could explain this difference in the DNA and 

botanical evidence (Aasen 1984, 51; Bailey 1940, 286; Hough 1897, 40; Robbins et al. 1916, 49-

50). Several samples did contain an unidentified sticky, amorphous, reddish-orange paste that 

could be the paste formed from yucca fruit. Alternatively, yucca leaves were also commonly 

chewed as quids by many prehistoric populations in the Southwest (LeBlanc et al. 2007), so 

recognizable macrobotanical remains of this taxon did not always make their way into the 

digestive tract.  

Concordances between data sets are equally revealing. The two specimens that yielded 

pollen evidence of yucca (identified to the subfamily Agavoideae), also tested positive for 
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cpDNA identified as Yucca brevifolia (Joshua tree). Of the three specimens that tested positive 

for squash DNA, one (sample 19) also contained squash seeds. The other two specimens (2 and 

8) also contained Cucurbita pollen. However not all specimens that contained squash pollen 

tested positive for cpDNA, three specimens that contained Cucurbita pollen did not test positive 

for DNA from the Cucurbitaceae family.  

All three samples that were tested for DNA and contained bone fragments in the 

macrofossil sample, tested positive for animal DNA (samples 10, 15, and 17). Interestingly, the 

only sample with identifiable faunal remains did not match the DNA results—sample 15 tested 

positive for deer and bighorn sheep DNA, but only contained the distal fragment of a rodent 

humerus (Figure 6.5). Two other macrofossil samples contained bone fragments (samples 19 and 

36), but these were not tested for DNA. 

Finally, cheno-am seeds and pollen were among the most common resources recovered in 

their respective datasets, and some correspondence between the pollen and macrofossil data for 

asters was apparent, as well. Sample 34 contained an unusually high amount of grass seed and 

pollen, although specimen 26 contained high amounts of seed but no grass pollen.  

Ecological Patch Association 

 In order to assess hypothesis 3 regarding patch-choice, I attempted to assign individual plant 

taxa to some of the plant community associations as described in Chapters 3 and 4. Five plant-

communities or ecological patches were designated: 1) pinyon-juniper woodland, 2) sage 

parkland and surrounding desert, 3) canyon bottom zones, 4) disturbed/field context, and 5) 

aquatic/wetland settings. While not all taxa could be reliably assigned to a given ecological 

setting, plant species that were dominant in a given community (and not any others) were given 
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that designation, and taxa commonly found in only found in one vegetation zone were counted as 

evidence of exploitation of that patch (see Table 4.2 for specific plant associations). Fortunately, 

many of the most common plants identified in this study could be confidently assigned one of 

these ecological categories.  

Table 6.9. Pollen Representation by Ecological Zone  

1 Pinyon/Juniper Woodland 4.86% 
2 Sage parkland and Desert Zones 3.29% 
3 Canyon Bottom Zones 15.50% 
4 Disturbed/Field Settings 57.37% 
5 Aquatic/Wetland Settings 1.07% 

Note: percentages exclude unidentified pollen.  

Table 6.10. Macrofossil Representation by Ecological Zone 

1 Pinyon/Juniper Woodland 10.47% 
2 Sage parkland and Desert Zones <0.01% 
3 Canyon Bottom Zones -  
4 Disturbed/Field Settings 84.22% 
 - Excluding Corn 9.14% 

5 Aquatic/Wetland Settings 0.01% 
Note: Percentages exclude unidentified plant remains, faunal remains, and charcoal. 

Disturbed/field settings were the most common ecological association from the pollen 

evidence. High amounts of cheno-am and aster pollen, which made up just over 50% of all 

identifiable pollen, were the major driver for these results. Pollen from disturbed settings 

comprised >57% of the pollen identified (Table 6.9). Although its inclusion would have 

increased the relative proportion of this patch, I did not include beeweed pollen as a disturbance 

plant in this analysis, because although commonly associated with disturbed settings, it is too 

common in other settings to confidently attribute it specifically to this patch.  

The macrobotanical data exhibit similar results (Table 6.10), though largely due to the 

high occurrence of corn macrofossils (>75%) rather than cheno-am seeds and other uncultivated 
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field/disturbance plants. Field plants other than corn made up approximately 9% of the identified 

macrobotanical remains by weight (Table 6.10).   

Taxa associated with canyon bottom zones are the second most common pollen group, 

although pinyon-juniper woodland is the second most common ecological category of 

macrofossil remains (Table 6.9 and 6.10). This difference results mostly from the high 

concentrations of cottonwood pollen in a few samples juxtaposed against the relatively high 

weights of pine nut hulls. Excluding cottonwood pollen, other pollen from this patch composes 

only 2.27% of the pollen identified. Pinyon-juniper woodland was the only other ecological 

patch that significantly contributed to the diet. Nearly 5% of the pollen came from pine or 

juniper, but as discussed earlier much of that may have been ambient. However, the macrofossil 

results indicate regular incorporation of pine nuts in the diet and occasional use of juniper, as 

well. Evidence for all of the resources specifically associated with one of the ecological patches 

(see Table 4.2) from this study were found in at least one specimen, except saltbush, which was 

not identified in the pollen or macrofossil analyses. 

AMS Dating Results 

This project represents the first time human paleofecal samples were directly dated from 

Turkey Pen Ruin. Previous radiocarbon dates associated with the midden at Turkey Pen Ruin 

range from approximately 90 BC to AD 540 (calibrated) excluding one date of ca. AD 1045 

from layer A1 (see Chapter 3, Figure 3.6). Since the end of the White Dog Phase is generally 

reckoned at AD 1, 200 years prior to the commencement of Cedar Mesa’s Grand Gulch Phase 

(Matson et al. 1988; Matson 1991; 2006a, b; Holstad 2010), cultural and subsistence patterns 

during this liminal period at Turkey Pen Ruin could contribute to our understanding of the 

culture history of Cedar Mesa. In light of this, I originally planned to incorporate direct 
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radiocarbon dating of all of the samples considered here, in order to better establish a timeline 

for the midden and try to discern any temporal changes before and after the Grand Gulch Phase. 

However, the eight specimens submitted for AMS assay demonstrated that the fecal assemblage 

in this study dates to a relatively short time interval and does not span the entire BMII 

occupation of the site (Table 6.11, Figure 6.6). All of the paleofecal samples dated ca. AD 73 to 

AD 181 (calibrated), a period in the late BMII and just prior to the Grand Gulch phase. More 

recent AMS dates from corn cobs (run by Kelly Swarts) also indicate that the midden predates 

the Grand Gulch phase; these 14 new dates range from ca. 25 BC to AD 164 (Appendix A). 

Table 6.11. AMS Dates and Associations of Paleofecal Samples 

Layer Specimen DirectAMS Codes Radiocarbon Yrs. BP Calibration 
A6 15 D-AMS 005433 1927 ± 26 AD 73 (41 – 105) 

B1 11 D-AMS 005431 1839 ± 28 AD 173 (135 – 211) 

B5 27 D-AMS 005428 1897 ± 26 AD 99 (75 – 123) 
B5 17 D-AMS 005434 1905 ± 30 AD 93 (66 – 120) 

C4 3 D-AMS 005432 1833 ± 31 AD 176 (137 – 215) 

D2 1 D-AMS 005429 1919 ± 27 AD 81 (53 – 109) 
D2 12 D-AMS 005430 1938 ± 30 AD 60 (26 – 94) 

D3 19 D-AMS 005435 1825 ± 26 AD 181 (145 – 217) 
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Figure 6.6. Midden profile with DirectAMS dates integrated. 
Figure from Matson 2015; note: the date of 1750 BP from layer D2 should read 1900 BP. 
 

Analysis 

These results show that although the midden may have accumulated over a longer period 

of time, the paleofecal samples all seem to date within approximately 100 to 150 years of each 

other. Unfortunately, rather than clarifying the stratigraphic associations in the midden, these 

results further demonstrate the degree of mixing among the layers. For instance, the two earliest 

dates obtained (ca. AD 60 and AD 73), came from the deepest and most superficial strata, 

respectively, and the most recent date (AD 181) was associated with the deepest layer excavated. 

Although only eight of the samples (18% of the total) were AMS dated, the proximity and 
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overlap of the dates obtained, combined with the variation of strata and layer associations, 

suggest that all of the specimens in this project likely fall within or very close to the same time-

frame. Note, all of the midden dates and specimen associations with strata and layer can be found 

in Appendix A. 

Conclusion 

 Not unexpectedly, corn was the most common dietary staple by far and occurs in all but one 

sample. Although cultigen pollen was generally rare in these samples, the importance of corn is 

very obvious from the macrofossils. The importance of pine nuts is also clear from the 

macrofossils, though less so from the pollen. Pine nut hulls made up more than 9% of the 

macrofossils by weight, but they are also large and heavier than other seed hulls and coats, which 

potentially skews the data. The pollen and macrofossil results are both indicative of heavy 

reliance on cheno-ams. The fact that the relative pollen distributions in these samples does not 

align with that from surface samples of Cedar Mesa is strongly indicative of their relevance to 

dietary research. The DNA and faunal evidence demonstrates that a variety of meat was eaten, 

but meat consumption was not likely a daily activity. DNA evidence also demonstrates that 

yucca made a much greater contribution to the diet than indicated by either the pollen or 

macrofossil evidence. The bearing of these results on my hypotheses will be discussed in the 

next chapter. The low overlap between the results from the pollen, macrofossil, and DNA 

analyses at least partially results from the differing rates at which pollen, macroscopic 

constituents, and DNA move through the digestive tract as described in Chapter 4 (Deagle et al. 

2010; Kelso 1976; Williams-Dean 1978). 

 Finally the AMS dating results indicate that in spite of the larger range of dates previously 

obtained from the midden, the preponderance of the paleofecal samples incorporated into this 
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study appear to date within approximately 120 years of each other and to predate the Grand 

Gulch phase of the BMII period. This may be important for understanding the environmental 

circumstances that led into the final cultural phase of the BMII period and the shift toward mesa-

top habitations and dry farming associated with that period.  
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CHAPTER 7 

Interpretations and Conclusions 

This chapter explains the interpretations and conclusions derived from the results 

presented in Chapter 6. It begins with a discussion of how the different lines of evidence either 

support or disprove each of the three hypotheses tested, focusing on how the results align with 

my expectations regarding incorporation of low-ranked resources, ecological patch use, and 

nutrition. The contextual relevance of the findings regarding corn fungus are integrated into this 

discussion, as well. Interpretations and conclusions are considered within the larger 

archaeological context that incorporates findings from other studies of BMII paleofeces (Aasen 

1984; Androy 2003).  

Consistent with previous research (Aasen 1984; Cooper et al. 2016; Matson 1991), the 

findings from this project indicate that corn was the most common resource in the diet. Other 

common resources included yucca, pine nuts, purslane, cheno-ams, and asters. Based on the 

DNA and macrofossil evidence, and corresponding isotopic evidence (Cooper et al. 2016), meat 

does not appear to have been consumed on a daily basis. These results have implications 

regarding my hypotheses on resource choice and the circumstances that encouraged an increased 

focus on farming during the BMII period.   

Hypothesis Testing 

Although the pollen, macrobotanical, and DNA data do not perfectly coincide, the 

combined narratives told by each line of evidence support the same overarching conclusions: 
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resources with lower returns than corn were common inclusions in the diet, and a high proportion 

supplemental resources came from anthropogenic ecological patches. 

Table 7.1. Resource Use and Nutritional Expectations  

 Hypothesis 1 Hypothesis 2 

E
xp

ec
ta

ti
on

s 

Common: large game, pine nuts, 
acorns, cactus fruit, mustard seed 

Common: grass seeds, sagebrush, 
sedge, chokecherry, cheno-ams, juniper 

berries, purslane, sunflower seeds, 
rodent meat 

Rare or absent: grass seeds, juniper 
berries, sagebrush, cheno-ams, 

purslane, sunflower seeds, juniper, 
sedge, chokecherry, rodent meat 

High return resources may or may not 
be present. 

All nutritional needs are met by 
cultigens and high-ranked wild 

resources. 

Minimum nutritional requirements are 
only met by including low-ranked wild 

resources, or are not met. 

 

Hypothesis 1 

 Hypothesis 1 tests the idea that people adopted and increased their reliance on farming 

because it was highly productive, and allowed them to focus their foraging efforts only on high-

return resources. If maize farming was adopted because it was highly efficient, then diet breadth 

should be narrow and exclusively focused on cultigens and high-ranked wild resources. Under 

this hypothesis people adopt agriculture to increase subsistence efficiency. Corn is nutritionally 

deficient, so if hypothesis 1 is correct, the resources used to supplement maize-based nutrition 

should augment the nutrient deficits of an all-corn diet and have caloric returns higher than, or 

equal to, maize farming. Resources such as pine nuts, game meat, cactus fruits, and mustard seed 

will be common dietary constituents, but Indian ricegrass, cheno-ams, purslane, dropseed, and 
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other low-return resources should be very uncommon or absent. The results from this project do 

not demonstrate this. 

Table 7.2. High-Ranked Wild Resource Representation 

Resource Representation 
Pine nuts High 
Deer High 
Tansy mustard Moderate 
Lagomorphs Moderate 
Bighorn sheep Low 
Pronghorn Low 
Cactus fruit Low 
Acorns Absent 
Bitterroot  Absent 
Cattail Pollen Absent 
Saltbush Absent 

High representation = economic representation in ≥30%, moderate = 10-29%, and low representation = <10%. So 
for pollen and macrofossil representation high ≥14 samples with macrofossil representation and/or more than 10 
pollen grains per sample, moderate representation = 5-13 samples, and low = 1-4 samples. For DNA evidence High 
= presence detected in 6+ samples, Moderate = 2-5 samples, and Low = 1 sample. 

 
Corn is the most common macrofossil constituent; its presence in all but one of the 

paleofecal samples indicates that it was eaten on a daily basis, probably multiple times a day. 

This further supports prior assertions that the earliest BMII inhabitants of Cedar Mesa were 

maize-reliant farmers (Aasen 1984; Coltrain and Janetski 2013; Matson 1991; Matson et al. 

1990). It is also clear from the macrofossil data that pine nuts were an important resource, which 

is consistent with the ethnographic record (Robbins et al. 1916; Stevenson 1909; Whiting 1939). 

Other than cattail pollen, pine nuts have the highest calculated return rates of any plant resource 

available in this area, so their incorporation into the diet is expected. Although storable, pine nuts 

are seasonal and somewhat unpredictable in terms of production (Jeffers 1995). Even though 

they are high-ranked and provide well-balanced protein, they may have been less dependable 

than other resources.  
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Although pine nut hulls were the second most common macrofossil constituent by 

weight, low-ranked cheno-ams, Indian ricegrass, and purslane leaves were also common dietary 

constituents, making it impossible to conclude in favor of this hypothesis (Table 7.2 and 7.3). 

Mustard seed and pollen were found in some samples, but none of the other high-ranked wild 

plant resources expected to contribute heavily to the diet under this hypothesis were found in 

more than a few specimens. Pine pollen was present in most of the samples, but generally at low 

concentrations. Given that pine pollen is wind-blown, produced in large quantities, and is 

ubiquitous in soil samples from Cedar Mesa (West 1978), it is likely that much of the pine pollen 

in these specimens was ingested incidentally. Regardless of the amount of pine nuts in the diet, 

small amounts of pine pollen are expected in these samples as a result of its presence it in the air, 

dust, and drinking water. So the pollen data do not offer much support for this hypothesis.  

The lack of evidence for squash consumption was surprising. DNA from Cucurbitaceae 

was definitively identified in only three specimens. Although the exact species attributions are 

not clear (Appendix C), based on the morphology of the seeds identified in the samples, 

Cucurbita pepo spp. (which includes pumpkin, winter squash, and summer squash) is the most 

likely identification. The DNA, macrobotanical, and pollen evidence all seem to indicate 

relatively infrequent squash consumption. But the seeds offer an excellent supplement to the 

three amino acids lacking in maize (lysine, isoleucine, and tryptophan), as well as folate and iron 

(see Table 5.2), so their low inclusion in the diet is interesting and may indicate a lack of need 

for squash as a supplemental resource. The fruit, on the other hand, is relatively low-ranked and 

less nutritious than the seeds, so would be expected to be an uncommon inclusion in the diet 

under this hypothesis. One explanation for the low levels of squash in the diet may be that squash 

was used primarily as gourd containers, particularly since this period is preceramic. 
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The majority of the DNA evidence also did not support this hypothesis. Only seven of the 

20 samples tested for DNA contained faunal DNA, and only five samples contained bone 

fragments (three of which also tested positive for faunal DNA). These findings do not support 

daily meat consumption, and are in agreement with conclusions from previous studies from this 

site (Aasen 1984; Cooper et al. 2016). One interesting pattern, however, is that paleofeces that 

tested positive for faunal DNA tended to test positive for more than one taxon, indicating that 

meat may have been only intermittently or seasonally reliable. Deer was the most common meat 

found; but still only 30% of specimens tested returned a positive result for deer DNA, and since 

these were also some of the specimens that tested positive for pronghorn and bighorn sheep 

DNA, large game was only identified in six of the 20 specimens tested. Although high-ranked 

resources like pine nuts and deer are found in some of these samples, the inclusion of low-ranked 

resources determines diet breadth. The relative amounts of high- and low-ranked wild resources, 

therefore, do not meet the expectations set forward for this hypothesis (Table 7.1). 

Hypothesis 2  

This hypothesis tests the idea that farming is adopted and intensified out of necessity in 

an unproductive environment. If food production was adopted in response to low or diminished 

occurrence of high-value resources, then I expect a broad diet that includes low-ranked wild 

resources, indicative of intensified foraging to supplement maize-based nutrition. This 

hypothesis proposes that resource depression (decreased encounter rates with high-ranked 

resources) pushed BMII peoples to depend on horticulture. Because dependency on a maize-

based diet presents nutritional deficits, I expect that foragers will attempt to target the highest 

ranked resources available to compensate for these deficiencies; if resources were depressed, 

however, they would have had to focus their energies on lower return resources to meet caloric 
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and nutritional needs. If resources within the environment were truly depressed, then one or more 

nutrients required to supplement maize may be insufficiently provided by supplemental 

resources. If maize farming was adopted and intensified because the availability of high ranked 

wild resources was declining, then average foraging returns would have been lower than 1100-

1700 kcal/hr. In this case, wild resources brought into the diet to supplement maize should 

include lower ranked resources such as Indian ricegrass, cheno-ams, sedge seeds, and sunflower 

seed.  

Table 7.3. Low-Ranked Wild Resource Representation 

Resource Representation 

Yucca High* 

Cheno-am High 

Aster High 

Purslane High 

Indian ricegrass Moderate^ 

Dropseed Moderate^ 

Juniper Low 

Sedge Low 

Onion Low 

Rodent Low 

See explanation below Table 7.2. 
*Yucca is included as high, although much of its representation may have come from recreational use (quid 
chewing). 
^For Indian ricegrass and dropseed the pollen evidence was not included since grass pollen was not identified to the 
species level. Furthermore, dropseed use is listed as moderate because it appears in seven samples, but it should be 
noted that these were mostly trace amounts. 

 

This hypothesis is supported by both the pollen and macrofossil data, and is indirectly 

supported by the lack of high-ranked faunal resources in the DNA results. The pollen data 

demonstrate economic use of plant resources with much lower caloric return rates than corn 
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including cheno-ams, juniper, cottonwood, and asters. Cheno-am and aster pollen were the two 

most common pollen types and their economic association is definitive. Deervetch and onion 

pollen were also relatively common, but the nature of their inclusion in the diet is not as clear. 

Deervetch is mildly toxic, but is edible in small quantities (Kunkel 1984) and the most common 

ethnographically documented use for this plant among Southwestern groups was as a medicine 

(Appendix E). Alternatively, because deervetch is entomophilous (insect pollinated) its presence 

may have originated from the consumption of honey. Onion is a very low-ranked resource, but 

its inclusion does not necessarily signify a need to rely on low-return resources since this plant is 

often chosen as a seasoning to enhance the flavor of food rather than for sustenance (Whiting 

1939; Appendix E). 

Economic use of low-ranked arboreal resources is also evident in the pollen data. Juniper 

pollen is one of the most common pollen-types on Cedar Mesa, along with pine (West 1978). It 

occurs in very low frequencies in most samples, possibly a result of incidental ingestion, but 

several fecal samples have high frequencies of juniper that more likely resulted from direct 

consumption. The occurrence of juniper is difficult to interpret because it can be used as a food 

or a medicine (see Appendix E). The miniscule amounts of associated macrobotanicals suggest 

that juniper may have been ingested as part of a liquid decoction, which is potentially consistent 

with ritual or medicinal rather than purely dietary choice.  

The most prevalent arboreal pollen is cottonwood, a taxa that is not as common in Cedar 

Mesa soil samples. It is completely absent from half of the paleofecal specimens and occurred at 

very low levels in most of those samples in which it was found. However, cottonwood 

dominated the pollen content of a few specimens (Figure 6.1). This is significant because high 

densities of cottonwood pollen likely reflect the ethnographically documented practice of eating 
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cottonwood buds or catkins (Ford 1968; Reinhard 1988, 68; Appendix E). Also, given the 

seasonal association of cottonwood blooms (winter-spring), and the absence of corn macrofossils 

from one of these samples, this may indicate a supplemental reliance on the canyon bottom patch 

for fresh food when other patches were less productive and stored food was running low. This 

lends support to hypothesis 2.  

The regular occurrence of low-ranked macrofossils such as cheno-am seeds, purslane 

leaves, Indian ricegrass (also found commonly by Kate Aasen), and sunflower further support 

this hypothesis. Although uncommon, dropseed was also found in a few samples. Dropseed is 

one of the lowest-ranked resources on the landscape and should only be included in the diet as a 

last resort, when other resources are unavailable. Evidence for occasional rodent consumption is 

consistent with this interpretation. Although return rates of rodent meat vary, rodents are the 

lowest-ranked prey resource and consumption may indicate a need for protein or other nutrients 

(such as B vitamins) not readily available from plants (see Table 5.4a). 

Faunal DNA was detected in only seven out of 20 of the samples tested, and many of 

these were larger-sized, high-ranked prey items. Even though meat was probably not consumed 

on a daily basis, these data indicate that high-value prey were available on the landscape albeit 

either in low frequencies or sporadically. Low levels of meat consumption are in line with 

conclusions based on other lines of evidence (Coltrain et al. 2006; 2007; 2012; Cooper et al. 

2016; Hawley et al. 1943). The relatively low frequencies of meat intake can also be interpreted 

as evidence against hypothesis 1 and in support of hypothesis 2 since meat generally has 

significantly higher returns than plant-based resources (see Table 5.4a).  

Yucca was the most common resource discovered through DNA evidence and its 

presence may be a result of consumption of the fruit (a relatively high-ranked plant resource) or 
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from chewing the leaves as quids, which would provide fewer calories and represent a more 

recreational use. Because specific return rates for yucca are unavailable, I used agave as a proxy 

which has estimated returns of 1014 kcal/hr. (Riley 2012; Table 5.4a), just below the calculated 

return rates for slash-and-burn farming (Barlow 2002; Table 5.4b). However, the aDNA analysis 

identified Yucca brevifolia or Joshua tree rather than the more common and locally available Y. 

angustissima (narrow-leaf yucca) or Y. baccata (banana yucca) (Appendix D). This species 

association is unexpected because Joshua tree is not a current yucca varietal in this area. This 

might demonstrate a difference between the ancient and modern flora of Cedar Mesa because 

Joshua tree currently only lives in the more arid Mojave Desert, but is often found in 

communities of blackbrush, as well as juniper and pinyon (Gucker 2006), all of which have been 

identified on Cedar Mesa (West 1978). This could be a result of long-distance trade, an error in 

the DNA identification or the use of genetic markers that are not divergent within Yucca species, 

or it may support Rouston and colleagues’ (2011) argument for a drought during this period, as 

discussed in Chapter 3. If this is evidence of harsher environmental conditions bears out, then the 

Joshua tree evidence supports hypothesis 2.     

On the whole, the combination of plant and animal resources identified in these 

specimens indicate that the BMII occupants of Turkey Pen Ruin were able to obtain adequate 

nutrition from the resources in their environment, but only with the inclusion of very low-ranked 

resources such as purslane leaves. There is no specific evidence for dietary deficiencies. 

However, it is probable that at certain times of year it may have been more difficult to get 

sufficient amounts of essential nutrients, since many important supplemental resources are only 

available seasonally. Moreover, vitamins A and C, are difficult to obtain from stored foods, and 

are generally only abundant in sources such as fresh herbs and organ meat (Table 5.2). Some of 
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the resources listed are also less nutritious when cooked (Table 5.2), and since stored foods are 

more likely to be cooked, essential amino acids, folate, and iron could have been hard to come by 

at times when fresh resources were scarce. Given that no particular nutrient was entirely missing 

from the diet or obtained solely from corn, it is impossible to conclude that the diet was nutrient-

deficient, even though a nutritionally sound diet is also not definitive.  

Hypothesis 3 

If the combined concentration of disturbance plants with cultigens increased overall 

subsistence efficiency of maize fields above the average efficiency for other ecological patches, 

then I expect the resources growing in that patch to become a large focus of the diet. If this 

hypothesis is correct, then weedy disturbance plants such as purslane, cheno-ams, asters, and 

members of the family Brassicaceae should figure prominently in the diet as a complement to 

maize and there may be greater evidence for animals that can be easily exploited close to 

agricultural fields such as cottontail and deer. This hypothesis is not an alternative to hypothesis 

1 and 2, but if this hypothesis is supported, there should be less focus on low-ranked, wild 

resources that do not thrive in disturbed/field contexts such as sagebrush, juniper, chokecherry, 

dropseed, and Indian ricegrass than on weedy annuals, regardless of their ranking.  
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Table. 7.4. Expectations of Resource Use and Nutrition for Hypothesis 3  

 Hypothesis 3 

E
xp

ec
ta

ti
on

s 

Common: cheno-ams, mustard, purslane, asters, 
possibly corn smut 

If H1 and 3, then field plants + high-return 
resources. 

If H2 and 3, then still a greater emphasis on 
field plants, but with low-return wild resources, 

too.   

Minimal nutritional requirements are met with 
large contributions from uncultivated field 

plants. 

 

The paleofeces from Turkey Pen Ruin contain much higher relative amounts of pollen 

from plants associated with field/disturbed contexts than the ambient pollen from surface 

samples on Cedar Mesa (West 1978). These pollen samples were dominated by disturbance 

pollen, particularly cheno-am and aster (Table 6.1). These two categories of pollen occurred in 

relatively high densities and were present in the majority of specimens. Based on archaeological 

pollen, as well as the high amount of seeds recovered at sites, West (1978, 146) concluded that 

cheno-ams may have been economically important on Cedar Mesa and others have even 

suggested that they were cultivated (Hurst et al. 2011, 96). Although the actual evidence for 

cultivation is lacking, the regular use of cheno-ams and other disturbance plants is strongly 

supported by the pollen and macrofossil data.  
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Table 7.5. Field Resource Representation 

Resource Representation 
Cheno-am High 
Aster High 
Purslane High 
Corn fungus High 
Mustard Moderate 

See explanation below Table 7.2. 
 

Plants from the mustard family (Brassicaceae), are also associated with disturbed 

contexts on Cedar Mesa (West 1978). Mustard pollen was found in 20 samples and was the 

dominant pollen in two. Since mustard plants are insect pollinated, their pollen does not travel 

far in large amounts; it should only be found at high concentrations in paleofeces through direct 

ingestion of the seeds, blossoms, or leaves of the plant, or possibly from honey consumption. 

The high occurrence of cheno-am, aster, and mustard pollen across the majority of 

samples, including clusters of attached grains in some samples, indicates that direct consumption 

of these taxa was common. Although cheno-am and aster pollens (particularly ragweed) are 

potentially windblown, the most logical interpretation of their common occurrence is direct 

consumption because it is unlikely that much of the pollen from these resources would 

contaminate the edible portions of cultigens in the same field. Corn has a thick, external husk 

that would protect the internal kernels. Many American squash varietals are covered by a thick 

rind that is not generally eaten but is used for utilitarian purposes. However, the potential for 

minimal pollen contamination does exist if disturbance pollen blew directly onto cultivated 

plants.  
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Uncultivated field plants (cheno-ams, sunflower, purslane, and mustard) make up nearly 

36% of the macrofossils, excluding corn, unidentified remains, and charcoal. These plants made 

up nearly as much of the macrofossils by weight as pine nut remains, and significantly more than 

Indian ricegrass and other low-ranked wild resources (Table 6.6). Although they contributed less 

to the overall weight than cheno-am seeds, purslane leaves were the most common uncultivated 

macrobotanical identifiable to a taxonomic level (i.e., not including miscellaneous plant fibers, 

charcoal, or unidentified material). Purslane leaves were found in 20 of the 44 samples tested, 

suggesting they were consumed on a very regular basis.  

Mustard seeds were not found in as many specimens as cheno-am seeds, but mustard 

seed coats are extremely thin and friable, so their preservation may have been lower than other 

plant seed coats. Mustard seeds are also actually relatively high-ranked among plant resources; 

although their calculated return rates are variable based on the source. Both Barlow (2002) and 

Simms (1987) estimate maximum returns for mustard seeds at around 1300 kcal/hr., placing 

them on par with returns for corn farming. Like cheno-ams and sunflower seeds, they also offer a 

complementary suite of nutrients to corn, and are very high in essential amino acids and iron 

(Table 5.2). Mustard greens were not identified in these specimens, but are an excellent source of 

vitamins A and C. It is possible that some of the mustard pollen identified in the paleofecal 

specimens came from leaf consumption, but without identified macrofossils this cannot be 

confirmed. 

Given the pollen data described above, and the fact that purslane leaves occurred in 

nearly half of the samples, and mustard pollen and seeds were found in several samples, field 

patches were probably an important focus of foraging activities, as well as farming. Nutritionally 

speaking, weedy annuals may have had more to offer than higher-ranked local plant resources 
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such as yucca and pine nuts. While calorically superior, pine nuts and yucca do not contain as 

wide an array or as high amounts of supplemental amino acids, vitamins, folate, and iron as 

field-based resources (Table 5.2). In fact, many of the uncultivated plants that commonly grow in 

fields are excellent supplements to a maize-centered diet. Neither sunflower/aster, nor cheno-am 

seeds and leaves are ranked as highly as corn, but they do provide a complementary suite of 

nutrients. Both resources are excellent supplements to five of the seven of the nutrients 

highlighted in Chapter 5, and though the sunflower and cheno-am seeds do not provide vitamin 

A or C, the leaves do provide these nutrients (Table 5.2). Cheno-am leaves were not detected 

during my analyses, but they were identified by Kate Aasen (1984). Regardless of leaf 

consumption, these were clearly an important source of essential amino acids, folate, and iron, 

since there is evidence of seed consumption. One potential caveat to this is that cheno-am seeds 

are much more nutritious raw than cooked (Table 5.2), so stored cheno-am seeds would have 

been less nutritious than freshly harvested seeds consumed raw. Purslane leaves are significant 

sources of iron and vitamins A and C (Table 5.2). The regular inclusion of purslane may indicate 

that it was an important source of these two vitamins. The regular consumption of a resource that 

is so calorically inefficient, however, may also mean that this was one of the only options for a 

regular source of vitamins A and C.    

The faunal DNA and macrofossil evidence suggest a focus on certain ecological patches 

often associated with specific elevations. For instance, the presence of cottontail in lieu of 

jackrabbit (Lepus spp.) DNA indicates that people were hunting in more mesic environments at 

mid-range elevations, since jackrabbits prefer low-elevation, arid environments (Cowan et al. 

2012, 132). Deer was the most common animal DNA and was identified in six samples. The 

higher proportion of deer than other meat resources is consistent with the faunal remains 
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identified from this site (Powers 1984, Appendix L, 89-95) and further indicates that hunting 

efforts were focused on more mesic, higher elevations, where deer were more abundant (Cowan 

et al. 2012, 132). However, the inclusion of rabbit, deer, and rodent bone could also be indicative 

of field hunting, since all three of these taxa are drawn to disturbed/field contexts (Adams 2004; 

Ford 1984; Szuter 1989), whereas animals such as bighorn sheep and pronghorn are not. Garden 

hunting was also hypothesized by Androy (2003) for the BMII occupation at Boomerang Shelter. 

Androy based his assessment on faunal remains from the site, but it is an apt comparison since it 

temporally overlaps with Turkey Pen Ruin’s BMII occupation. As mentioned above, the low 

inclusion of faunal resources supports hypothesis 2, but given the high inclusion of animals that 

often favor anthropogenic environments, this evidence also potentially supports hypothesis 3. 

The findings related to corn smut consumption are significant for several reasons. 

Although corn smut was previously associated with Turkey Pen Ruin by Karl Reinhard (Powell 

1984, 99; Reinhard 1988, 69), it was not been explicitly linked to the Basketmaker II period, and 

the potential nutritional significance of these findings have not been explored. The specific 

association of corn smut consumption with the Basketmaker II period is significant due to the 

need to supplement maize-based nutrition prior to bean horticulture as discussed in Chapter 5. 

Because U. maydis produces a massive amount of spores per gall (>200 billion) (Valverde et al. 

2012, 202), and because pollen (and ostensibly spores) can take multiple weeks to completely 

pass through the digestive tract (Kelso 1976; Williams-Dean 1978), it is difficult to estimate how 

commonly and in what quantities corn smut may have been consumed. However, it is clear from 

the evidence that corn smut was purposely consumed and likely with some regularity given that 

spores were found in all but one specimen and were often found at higher concentration values 

than economic pollen species (Table 6.8).  
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The tolerance and consumption of corn fungus may support either hypothesis 1 or 2. By 

modern estimates corn smut infection decreases overall maize output by an average of 10% 

(Christensen 1963). Maize outputs for simple horticulture and slash-and-burn farming for this 

region are estimated to range from 2 – 15 bushels per acre (50.8 – 381 kg) (Barlow 2002, 79-80), 

so a 10% loss could range from 5.08 – 38.1kg of corn per acre—that is a potential loss in caloric 

output of 19,609 – 147,066 calories. This could support the idea the crops were not needed to 

make ends meet. Of course these are likely over-estimates since the infected ears were still 

consumed.  Estimates also are based strictly on calories and not caloric return rates. On the other 

hand, if the environment was very unproductive, nutrients may have been a larger limiting factor 

than calories, in which case the consumption of corn smut would support hypothesis 2. The 

dietary inclusion of corn smut as a nutritional supplement to corn most strongly supports 

hypothesis 3, since it represents the use of a resource that naturally occurs in the field to augment 

maize-based nutrition.  

As outlined in Chapter 5, corn fungus provides a complementary source of amino acids to 

corn, particularly lysine, and is high in other essential nutrients such as folate. In light of this, it 

comes as no surprise that BMII agriculturalists included corn fungus in their diet, despite the 

reduction in crop output. If the nutrients available from corn smut were a stronger limiting factor 

than calories, then corn fungus growth should be encouraged or at least tolerated and it should be 

a regular part of the diet.  

Discussion and Conclusions   

Based on the variety of resources included in the diet, I conclude that people living at 

Turkey Pen Ruin during the BMII period were most likely able to obtain adequate nutrients. 

However, judging from the presence of low-ranked resources, including Indian ricegrass, 
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purslane, and rodent meat, it was likely difficult to get adequate calories and/or nutrients from 

available resources and food stores during some periods. Samples such as 9, 18, and 26 indicate 

that high-return resources were not always available to supplement maize. Further, specimen 18, 

which contained no corn, suggests that perhaps even maize stores were not entirely reliable. 

Several samples had higher amounts of low-return resources such as cheno-ams and Indian 

ricegrass than corn, under these circumstances, hypothesis 1 cannot be supported.  

The consumption of low-return resources such as Indian ricegrass, cheno-ams, dropseed, 

purslane, rabbit, and rodent meat all lend support to hypothesis 2. From this evidence it appears 

that early farmers on Cedar Mesa intensified farming efforts (and perhaps initially adopted 

cultivation) due to unfavorable environmental circumstances and in order to make ends meet. If 

environmental circumstances were more favorable, the wild resources incorporated into the diet 

should have higher return rates and resources such as Indian ricegrass and cheno-ams would not 

have been necessary to supplement the diet. Given these data, I conclude that people were 

pushed to adopt and intensify food production at Cedar Mesa. Since many of the items identified 

in this study are low-return resources, and some of the most common inclusions are associated 

with anthropogenic niche-construction. In light of the above, it seems unlikely that Cedar Mesa 

could have supported a population of hunter-gatherers. This is not a new suggestion, R.G. 

Matson (1991) suggested that hunting on Cedar Mesa would not have been a favorable endeavor. 

This explains the lack of evidence for much Archaic occupation on Cedar Mesa and further 

supports the idea that expansion into this area may have resulted from population growth in 

other, more productive areas. 

This research also provides strong support for hypothesis 3 since the majority of 

resources included that are ranked lower than corn are associated with the field patch. Resources 
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strongly associated with fields and human disturbance such as chenopodium, amaranth, purslane, 

and corn fungus were important supplements to the incomplete suite of essential nutrients in 

maize. This indicates that productivity of the field as a larger patch (including uncultivated 

resources) encouraged increased reliance on agriculture. These resources increased nutritional 

and caloric output from the fields and provided more immediate returns from field work (by 

harvesting weeds), to complement the marginal returns derived from caring for maize plants. The 

high percentage representation of cheno-am, aster, and other disturbance pollen, combined with 

the relatively common occurrence of cheno-am seeds, purslane leaves, and potentially the 

inclusion of rodent and cottontail support a high dependence on the field as a patch including 

cultigens as well as wild plants and animals (hypothesis 3). Since the preponderance of 

supplemental resources (and nutrients) seems to have come from uncultivated field-based 

resources and resources higher ranked than corn, it is impossible to conclude solely in support of 

hypothesis 2. 

Turkey Pen Ruin is one of the earliest permanent occupations of the Cedar Mesa area 

(Lipe et al. 2011; Matson et al. 1990). Its small size, lack of grandiose architecture, and remote 

location perhaps belie the important role that studies of this site have played in developing our 

understanding of Southwestern archaeology and particularly the BMII period. The numerous 

paleofeces and well-preserved organic remains from Turkey Pen provide an excellent 

opportunity to study the subsistence and cultural developments that presuppose the final cultural 

phase of BMII—the Grand Gulch phase, which is most famously associated with Cedar Mesa. 

Evidence from this site was pivotal in establishing the independent development of turkey 

domestication in the U.S. Southwest (Speller et al. 2010), and it has been important to 

underscoring the centrality of corn to the BMII diet. The ancestral Puebloans that lived on and 
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around Cedar Mesa helped to lay the cultural foundations for Puebloan subsistence and 

economics (Coltrain et al. 2006; 2007; 2012; Matson 1991; 2006a, b; Matson and Chisholm 

1991), ritual and material culture (Eddy 1961; 1966; Lipe et al. 2016; Speller et al. 2010), and 

even settlement patterns (Dohm 1994). The high level of maize dependence evident among the 

earliest Cedar Mesa Basketmakers is consistent with the migration model for maize adoption 

(Matson 1999, 2002). However, the data from this project demonstrate that the earliest farming 

populations on Cedar Mesa were living in marginal environmental conditions, under such 

circumstances populations that were once more dependent on foraged resources should increase 

their focus on food production. Meaning this is also in line with expectations from the 

indigenous adoption model, which states that maize reliance should be contingent upon 

environmental circumstances (Irwin-Williams 1973; Roth 2017). Furthermore, the high inclusion 

of weedy disturbance plants is consistent with expectations regarding maize’s incorporation into 

Archaic subsistence strategies (Roth 2017, 36-37), as is the continued use of other plants like 

Indian ricegrass that were staples of the Archaic diet in the region. As such, the evidence from 

this project does not conclusively support either model for the movement of maize into the 

Southwest, rather it demonstrates that the initial level of agricultural dependence at Cedar Mesa 

does not conflict with the expectations of the indigenous adoption model given the 

environmental circumstances. 

Investigation of the midden contents at Turkey Pen Ruin provides a rare opportunity to 

focus on the subsistence practices of the earliest occupants of this area. Data from the paleofecal 

specimens examined here provide strong support for a largely sedentary farming population, 

regular use of uncultivated, field-based resources, and the earliest evidence for the use of corn 

fungus in the Southwest. These results demonstrate the motivating factors for the adoption and 
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intensification of food production at Cedar Mesa. This project also reveals the nature of 

economic decisions and practical motivations of Basketmaker II farmers and can help shape 

future understanding of the process of development of the Puebloan agricultural complex in the 

northern Southwest.   
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