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ABSTRACT
With the increasing popularity of open-source software devel-
opment, there is a tremendous growth of software artifacts that
provide insight into how people build software. Researchers
are always looking for large-scale and representative software
artifacts to produce systematic and unbiased validation of
novel and existing techniques. For example, in the domain
of software requirements traceability, researchers often use
software applications with multiple types of artifacts, such
as requirements, system elements, verifications, or tasks to
develop and evaluate their traceability analysis techniques.
However, the manual identification of rich software artifacts
is very labor-intensive. In this work, we first conduct a large-
scale study to identify which types of software artifacts are
produced by a wide variety of open-source projects at different
levels of granularity. Then we propose an automated approach
based on Machine Learning techniques to identify various
types of software artifacts. Through a set of experiments, we
report and compare the performance of these algorithms when
applied to software artifacts.
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1 INTRODUCTION
Empirical and data-centric research is largely enabled by the
existence of datasets used to develop new research techniques
or evaluate and compare existing ones. An example of data-
centric research is the automated software requirements trace-
ability. In this area, training datasets are needed to train trace-
algorithms based on Machine Learning (ML) techniques. Re-
searchers use labeled datasets of functional and non-functional
requirements to train classification techniques to create trace-
ability links between quality attributes and requirements doc-
ument, design models and source code [7, 35, 38, 39, 46]. Vali-
dation datasets are needed to tune parameters of such trace-
algorithms [6, 30, 35]. Testing datasets are used to test the
performance of trace-algorithms on unseen data. Researchers
use datasets to evaluate the accuracy of trace-algorithms based
on Information Retrieval (IR) by establishing links between
requirements and source code [11, 12, 21, 46, 53]. In other do-
mains, researchers use design documents to create a ground
truth software architecture model for an evolving software
system [16].

Obtaining such software development datasets is one of
the most frequently reported barriers for researchers in the
software engineering domain [28, 44]. In recent years, with the
advancement and popularity of the open-source approach to
software development, researchers benefit from publicly avail-
able source code repositories [36]. Software artifacts, other
than source code and issue tracking entities, can also provide
a great deal of insight into a software system and facilitate
knowledge sharing and information reuse. However, it can
be a labor-intensive task to manually identify the types of
artifacts available or lacking in a specific open-source project.
Previous studies show that obtaining such artifacts from open-
source projects is non-trivial and researchers lack appropriate
automated support to identify, filter, and browse through such
artifacts [57]. More importantly, we currently lack an in-depth
understanding of the various types of software artifacts that
are available in open-source projects. The common assump-
tion is that open-source projects often lack software artifacts
such as requirements and design documents.

In this paper, we aim at improving the understanding of
open-source projects by investigating this common assump-
tion, thus, answering two motivating questions:
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Motivating Question #1: What types of artifacts are
created during open-source software development?

To this end, we conduct a large-scale empirical study in-
volving 383 open-source software projects that are randomly
sampled from GitHub. These projects are studied to obtain an
empirically-based understanding of the artifacts developed in
open-source projects. Then we classify all artifacts contained
in this sample of open-source projects using the proposed
automatic approach. Results show that indeed open-source
software projects often lack documentation related artifacts,
which account for only 6.12% of the total number of software
artifacts. Although the quantity of documentation related arti-
facts is low, 14.88% of the projects contain either design or re-
quirement documents, which means that open-source projects
could be a valuable resource for researchers interested in ob-
taining such artifacts.

Motivating Question #2: Can we automatically detect
and categorize open-source software artifacts?

Using heuristics, we categorize artifacts into two groups:
those that can be classified based on file name and extension
alone (e.g., bat files) and those that require deeper analysis
in order to be classified (e.g., text documents). We manually
classify a sample of the artifacts from the second group and
construct an oracle. During the manual classification, we iden-
tify features that are relevant for artifact classification. After
this, we explore various ML algorithms for software artifact
classification. Next, we report the performance of our approach
on the validation and testing datasets and finally, we classify
all artifacts present in the 383 open-source projects and report
the prevalence of the different types of artifacts.

Our results show that we can successfully apply ML algo-
rithms to text documents to classify software artifacts. Using
ensemble techniques, such as voting, we are able to combine
the predictive power of several algorithms that perform well
on unique categories of software artifacts to create one clas-
sifier with improved performance across all categories. Our
model achieves 85% precision and 82% recall when evaluated
on the manually created oracle using 10-fold cross-validation.
When applied to a testing dataset of unseen data gathered after
the parameter tuning on the validation dataset, our approach
achieves 76% precision and 75% recall.

The contributions of this work are as follows:
1. We provide insights into the types of artifacts created

during open-source software development. Although docu-
mentation related artifacts only account for 6.12% of total
software artifacts in open-source software projects, 14.88% of
the projects contain either design or requirement documents,
which is valuable resources for empirical studies that require
such documents.

2. We propose a novel approach that utilizes heuristics and
various ML classifiers that automatically classify software ar-
tifacts.

3. We supply a replication package [31], which includes (i)
information about the sampled projects, (ii) an oracle of 208
manually classified documentation related software artifacts
used for training, validation, and testing of the proposed ap-
proach, and (iii) the list of features used for the ML algorithms.

Paper Structure. Section 2 provides details regarding the
study design and the automatic artifact classification approach.
Section 3 presents the results, while Section 4 discusses related
literature. Threats to validity are discussed in Section 5 and
Section 6 concludes the paper and outlines directions for future
work.

2 STUDY DEFINITION AND DESIGN
The goal of this study is to investigate what types of arti-
facts are created during open-source software development.
To achieve this goal, we propose an automatic approach for
software artifact detection and classification using machine
learning approaches. The quality focus is the performance
of the proposed approach on artifact classification in terms
of selected evaluation metrics such as precision and recall.
The perspective of the study is that of researchers, who are
interested in automatically obtaining software development
artifacts that fit their research need. The evaluation is car-
ried out in the context of open-source projects collected from
GitHub [24]. More specifically, the study aims at addressing
the following research questions:

• RQ1: How can software artifacts be categorized? To an-
swer this question we randomly sample from a large
set of open-source projects and manually examine the
type of artifacts available.

• RQ2: How accurate is the proposed approach for auto-
matic software artifact classification? We investigate the
performance of the proposed approach using different
evaluation metrics. We report results on validation and
testing datasets using 10-fold cross-validation.

• RQ3: What types of artifacts are created during open-
source software development? We classify all artifacts
present in the studied open-source projects and report
the prevalence of the different types of artifacts.

Figure 1 depicts the overview of our approach, which is
designed to automatically classify software artifacts leverag-
ing (i) heuristics based on file names and extensions and (ii)
existing ML algorithms. To answer RQ1, we collect a large set
of diverse open-source projects and obtain a significant ran-
dom sample of the projects. We identify the artifacts contained
in the sampled projects and divide them into two groups by
applying heuristics on file names and extensions. The first
group contains artifacts that can be classified solely based on
file names and extensions whereas the second group contains
artifacts that require deeper analysis in order to be classified.
We manually classify a sample of the artifacts contained in
the second group to construct an oracle of classified artifacts.
During the manual classification, we also identify features that
could be used to automate the artifact classification. For RQ2,
we automate the feature extraction process and use various ML
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Figure 1: Approach overview.

algorithms to automatically classify software artifacts belong-
ing to the second group. Finally, to answer RQ3 we classify
all artifacts of the studied open-source projects and report
the frequency of occurrence of each type of artifact identified
during the manual process.

The rest of this section is organized as follows: Section 2.1
provides details about the software systems used in this study.
Section 2.2 describes the process that we followed to create
the oracle. Section 2.3 describes the proposed automatic clas-
sification approach and section 2.4 lists the evaluation metrics
used to evaluate the performance of the proposed approach
for automatic artifact classification.

2.1 Subject Systems
We extract a large set of 91,108 open-source projects from
GitHub making use of a code crawling application known as
GHTorrent [19]. GHTorrent acts as a service to extract data
and events, returning MongoDB data dumps. The dumps are
composed of information about projects in the form of users,
comments on commits, languages, pull requests, follower-
following relations, and others.

To collect a significant sample of projects for our study, we
randomly sample 383 projects from the collected open-source
projects, ensuring 95% confidence level and 5% margin of er-
ror. All research questions are addressed using the sampled
projects.

2.2 Oracle
To create an oracle of classified software artifacts, we manu-
ally examine a random set of artifacts from the 383 sampled
projects. When the file name/extension are insufficient to clas-
sify an artifact, we analyze the file content. Two coders perform
the classification of artifacts independently. An inter-rater reli-
ability (IRR) analysis [23] is used to assess the degree to which
coders consistently classify software artifacts. Both coders are
Master students in Computer Science. Disagreements between

the coders are resolved with discussions and when necessary
a third coder is brought in. The category of artifacts are coded
using categorical variables. The Cohen’s kappa statistic mea-
sures the observed level of the agreement between coders for
a set of nominal ratings and corrects for agreement that would
be expected by chance, providing a standardized index of IRR
that can be generalized across studies [23]. Possible values for
kappa range from -1 to 1, with 1 indicating a perfect agreement,
0 indicating a completely random agreement, and -1 indicating
a total disagreement. Landis and Koch [27] provide guidelines
for interpreting kappa values as follows: values from 0.0 to
0.2 indicate slight agreement, values from 0.21 to 0.40 indi-
cate fair agreement, 0.41 to 0.60 indicate moderate agreement,
0.61 to 0.80 indicate substantial agreement, and 0.81 to 1.0
indicate almost perfect or perfect agreement. The data in this
study is collected through ratings provided by coders and has
a significant impact on the computation and interpretation of
our study. It is important that coders can independently reach
similar conclusions about the types of software artifacts they
identify because that confirms the established categories are
well defined. Thus, we target at least substantial agreement,
i.e., above 0.61.

2.3 Automatic Artifact Classification
To automate the software artifact classification process we
identify heuristics based on file names and extensions (Sec-
tion 2.3.1). For files that require further analysis we extract
features (Section 2.3.2) that we use as input to machine learn-
ing algorithms (Section 2.3.3).

2.3.1 Heuristics Application. We utilize existing file name
and extension categorization [10] and we randomly sample a
portion of the most frequently occurring extensions to confirm
the correctness of such categorization. In addition to file ex-
tension, we expect the file name to provide useful information
in artifacts identification as well. For example, testing code
is often organized under directory with names contain “test"
or “tests" and files with .wav extension can be automatically
identified as audio file. Such identification is assumed to be
correct by construction. On the other hand, some files, such as
.txt, can not be identified without examining the file content.

2.3.2 Feature Creation Process. Generating a set of features
for text classification problems could be achieved with the
use of various information retrieval techniques. For instance,
one could use a Vector Space Model [43] and use a weighting
schema such as Term Frequency-Inverse Document Frequency
(TF-IDF) [45] to automatically extract the most important
terms in a document. Other, more sophisticated techniques
that could be used are Latent Semantic Indexing (LSI) [14] and
Latent Dirichlet Allocation (LDA) [3]. Information retrieval
techniques are most useful when the characteristics of the
documents that we are working on are unknown. In other
words, we rely on the technique to identify hidden patterns
that characterize each document.

Instead, we decided to use the knowledge gained through
the manual validation process of artifacts and thus manually
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creating the set of features that characterize each type of arti-
fact. Because an optimal set of features cannot be determined
a priori, the two annotators generate an initial set of features
and iteratively refine the set through discussions. This manual
approach gives us more flexibility in determining the relevant
set of features, while harnessing the knowledge gained during
the oracle creation process.

2.3.3 Machine Learning Algorithms. We select seven dif-
ferent machine learning approaches belonging to three differ-
ent categories: decision trees, Support Vector Machines, and
Bayesian Networks. Research has shown that these algorithms
perform well for text classification problems [25, 32, 34, 49].
We use the implementations provided through Weka [22] and
evaluate the classifiers using 10-fold cross-validation. In other
words, we evaluate the predictive models by partitioning the
original sample into 10 equal sized sub samples, performing the
analysis on one subset, and validating the analysis on the other.
The validation is repeated 10 times to obtain an average esti-
mate of the predictive model. We briefly describe the selected
algorithms and the parameter tuning that we performed:

(1) Random Forest [4] averages the predictions of a num-
ber of tree predictors where each tree is fully grown
and is based on independently sampled values. The
large number of trees avoids over fitting. Random For-
est is known to be robust to noise and to correlated
variables. We use the function randomForest (package
randomForest) with the number of trees being 500 as a
starting point, which has shown good results in previ-
ous works [52]. We tune the parameters for the num-
ber of trees varying from 500 to 1000 and for the fea-
tures explored at each branch from the default value:
(log2(#predictors) + 1) to 20% of the total number of
features with a step of 0.05.

(2) Sequential Minimal Optimization (SMO) is an im-
plementation of John Platt’s sequential minimal opti-
mization algorithm to train a support vector classifier.
We use RBF kernel, Polynomial kernel, and the Pear-
son VII function-based universal kernel (PUK) [50] in
combination with this classifier. We tune the exponent
parameter of the classifier varying from 1.0 to 4.0 with
a step of 0.5, the gamma parameter from 0 to 1 with a
step of 0.05, and the cost parameter from 1 to 50 with a
step of 1.

(3) MultinomialNaïveBayes is a specific version of Naïve
Bayes, created for improved performance on text classi-
fication problems [34]. Naïve Bayes is the simplest prob-
abilistic classifier applying Bayes’ theorem. It makes
strong assumptions on the input: the features are con-
sidered conditionally independent among each other.
We explore the performance of the classifier using ker-
nel estimator and supervised discretization.

(4) J48 is an implementation of the C4.5 decision tree. This
algorithm produces human understandable rules for the
classification of new instances. The implementation pro-
vided through Weka offers three different approaches
to compute the decision trees, based on the type of the

pruning techniques: pruned, unpruned, and reduced
error pruning. We tune the parameter for the minimum
number of instances at each leaf from 1 to 8 with a step
of 1.

(5) Ensemble Learning is used to combine individual clas-
sifiers with the aim of obtaining better overall predic-
tive performance. We use the majority vote algorithm
provided through Weka. The majority vote approach
considers the votes of each classifier for the label of an
instance and uses the label agreed upon by the majority.

2.4 Evaluation
We evaluate the performance of the automatic artifact classifi-
cation approach using the following evaluation metrics:

2.4.1 Precision. Precision is defined as the percentage of
artifact predicted as belonging to the categories that are correct
with respect to the oracle, Precision = TP/(TP+FP), whereTP
and FP are the number of true and false positives, respectively.

2.4.2 True Positive Rate (TPR). TPR or relative recall is cal-
culated as the ratio between the number of true positives and
the total number of positive events, i.e.,TPR = TP/(TP + FN ).
In the context of this study, the TPR indicates howmany of the
manually known software artifacts are correctly discovered.

2.4.3 F-Score. Precision and recall are inversely related,
thus, it is difficult to compare results of the model using the
two metrics. F-score is used to aggregate both measures into a
single value. F-score is the harmonic mean of the precision and
recall, i.e., F = 2 ∗ Precision ∗TPR/(Precision +TPR). F-score
reaches its best value at 1 (perfect precision and recall) and
worst at 0.

2.4.4 Area Under the Receiver Operating Characteristic (ROC)
curve. ROC is a plot of the true positive rate against the false
positive rate at various discrimination thresholds. The area
under ROC is close to 1 when the classifier performs better and
close to 0.5 when the classification model is poor and behaves
like a random classifier.

2.4.5 Matthews Correlation Coefficient (MCC). MCC is a
measure used inmachine learning to assess the quality of a two-
class classifier especially when the classes are unbalanced [33].

MCC = T P ·T N−F P ·FN√
(T P+F P )(FN+T N )(F P+T N )(T P+FN )

Values range from -1 to 1, where 0 indicates that the ap-
proach performs like a random classifier. Other correlation val-
ues are interpreted as follows:MCC < 0.2: low, 0.2 ≤ MCC <
0.4: fair, 0.4 ≤ MCC < 0.6: moderate, 0.6 ≤ MCC < 0.8:
strong, andMCC ≥ 0.8: very strong [8].

2.4.6 Micro andMacro Average. There are different ways to
average results of a multi-class classifier. Macro-average treats
each class with equal weight and is calculated as the average
of the metrics computed within each class. Micro-average
gives each individual instance equal weight so that the largest
classes have most influence. It is computed by aggregating
the outcomes across all classes and computing a metric with
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Figure 2: Distribution of primary languages in the sam-
pled projects.

Table 1: Statistics for the size of the sampled projects.

LOC

Min 2
Q1 374
Median 1,264
Mean 102,986
Q3 9,127.5
Max 12,609,300

aggregated outcomes. We report all evaluation metrics along
with both micro and macro average.

3 RESULTS AND ANALYSIS
In this section, we report the results of our study, with the aim
of answering the research questions formulated in Section 2.

3.1 RQ1: How can software artifacts be
categorized?

We extracted 91,108 open-source projects in various program-
ming languages from GitHub between April and October 2015.
To achieve 95% confidence level and 5% margin of error, we
randomly select 383 applications and study software artifacts
in those projects. The size of the selected subjects, in terms
of Lines Of Code (LOC), ranges from 2 to 12 million LOC. Ta-
ble 1 provides descriptive statistics of the sampled projects1.
In addition, Figure 2 shows the distribution of the primary
programming language across the projects, i.e., the language
with the highest number of LOC.

We identify the following artifact types only by file names
and extensions as shown in Table 2: application, archive, audio,
disk image, font, image, project, source code, testing code, and
miscellaneous. Some file extensions can be associated with
1LOC is computed using CLOC [9] which counts blank lines, comment lines,
and physical lines of source code separately. We report the physical lines of
source code.

Table 2: Heuristics applied to identify types of non-
documentation related artifacts.

Artifact Type Heuristic

Application .bat .cmd .exe .ser .swf
Archive .a .gz .jar .pack .zip
Audio .kt .mp3 .ogg .wav
Disk Image .scl
Font .eot .otf .ttf .woff
Image .blp .bmp .dds .gif .ico .jpeg .jpg .png .psd .rs .svg .tga

.tif .xpm
Project .csproj .pbxproj .vcproj .vcxproj
Source Code .as .asm .c .cc .class .coffee .cpp .cs .cshtml .css .ctp .cxx

.d .dll .ebuild .ejs .el .erb .erl .f .f90 .go .gradle .groovy

.h .haml .hpp .hs .i .java .js .jsp .less .lua .m .mo .o .php

.phpt .phtml .pl .pm .pp .py .pyc .r .rb .s .scala .scss .scssc

.sh .smali .so .sql .swift .t .tcl .ts .vb .vim .rkt
Testing Code if a file is classified as code, we further examine if “test",

“tests", and/or “mock" is contained in fully qualified file
name, ex. ProjectName/src/test/file.java

Miscellaneous non-readable files
non-English files
insufficient information (files with ≤ 30 words)

multiple file types. For example, png can be Portable Network
Graphics Image or Corel Paint Shop Pro Browser Catalogue,
i.e., an image file or a documentation file. We randomly sample
5 instances of such extensions and assign them to one file
type based on their file content. In addition to extensions we
separate testing code from source code, by verifying if one
of the following keywords appears in file name or directory:
“test”, “tests”, and “mock”. Another heuristic is used to identify
miscellaneous files based on the number of words in the file.
Through experiments, we observe that a threshold of 30 offers
a good compromise between precision and recall.

We analyze the file extensions associated with open-source
projects. There are 234,296 artifacts with 1,217 distinct files
extensions in the sampled projects, excluding hidden files.
However, the top 38 most frequent file extensions occur in
more than 95% of the projects and account for over 76% of
the total artifacts. Table 3 shows the top 38 most frequent file
extensions along with the number of projects that contain files
with these extensions and the number of files with these exten-
sions in the sampled projects. “Num. of Projects" (%) reports on
the number (percentage) of sampled applications that contain
files of each extension. “Num. of Files" (%) reports on the num-
ber (percentage) of files with each extension in the sampled
applications. “Cum. %" reports the cumulative % of the artifacts.
For instance, the first row shows that 1) 383 out of the 383 sam-
pled projects, i.e., 100%, contain files without extension and 2)
13,706 out of 234,296 artifacts, i.e., 5.85%, have no extension.
The extensions highlighted in gray are documentation related
files that are not identified by the heuristics shown in Table 2.
Since it is not feasible to manually go through every single
file, we sampled 2% of files with the highlighted extensions.

To create an oracle of documentation related files, two
coders manually and independently classify 894 randomly se-
lected artifacts. 149 out of 894 sampled artifacts are documenta-
tion related files. During this manual classification process, we
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Table 3: Extension distribution in the sampled projects.

File Num. of % Num. of % Cum. %
Extension Projects Files

no extension 383 100.00% 13,706 5.85% 5.85%
md 262 68.41% 1,853 0.79% 6.64%
html 162 42.30% 3,203 1.37% 8.01%
txt 162 42.30% 7,828 3.34% 11.35%
png 153 39.95% 8,450 3.61% 14.96%
js 152 39.69% 9,921 4.23% 19.19%
css 132 34.46% 1,405 0.60% 19.79%
xml 115 30.03% 6,147 2.62% 22.41%
json 109 28.46% 1,542 0.66% 23.07%
jpg 97 25.33% 1,300 0.55% 23.63%
java 79 20.63% 3,582 1.53% 25.15%
ico 65 16.97% 96 0.04% 25.20%
svg 59 15.40% 435 0.19% 25.38%
sh 58 15.14% 1,265 0.54% 25.92%
gif 56 14.62% 2,614 1.12% 27.04%
properties 53 13.84% 164 0.07% 27.11%
py 53 13.84% 15,147 6.46% 33.57%
h 49 12.79% 48,448 20.68% 54.25%
php 42 10.97% 2,645 1.13% 55.38%
jar 42 10.97% 260 0.11% 55.49%
ttf 42 10.97% 131 0.06% 55.55%
yml 39 10.18% 264 0.11% 55.66%
woff 37 9.66% 79 0.03% 55.69%
eot 36 9.40% 78 0.03% 55.73%
pdf 35 9.14% 400 0.17% 55.90%
rb 32 8.36% 2,267 0.97% 56.86%
scss 29 7.57% 780 0.33% 57.20%
c 28 7.31% 43,056 18.38% 75.57%
sln 28 7.31% 100 0.04% 75.62%
lock 27 7.05% 41 0.02% 75.63%
conf 26 6.79% 270 0.12% 75.75%
bat 26 6.79% 51 0.02% 75.77%
plist 25 6.53% 266 0.11% 75.88%
cpp 25 6.53% 1,581 0.67% 76.56%
cache 23 6.01% 59 0.03% 76.58%
log 22 5.74% 133 0.06% 76.64%
config 21 5.48% 77 0.03% 76.67%
map 20 5.22% 123 0.05% 76.73%

iteratively refine and consolidate the initial list of categories as
needed. The initial IRR value is 0.64 and it is calculated for a set
of 115 artifacts. The two coders then discuss the discrepancies
to reach an agreement. The subsequent IRR value increased
to 0.786 for the next 115 artifacts, which indicates substantial
agreement [27]. Since kappa shows substantial agreement, the
remaining software artifacts categorization was conducted
by only 1 coder. Our manual analysis led to the creation of a
taxonomy of documentation related artifacts with 7 distinct
categories. A description of each category follows:

(1) Contributors’ Guide contain information targeting
the contributors to the project such as how to begin
contributing to the project, the review process, tips on
debugging, etc.

(2) Design Documents contain information about the de-
sign of the project, such as design patterns and design

Table 4: Sample list of features.

Document Type # Example Features

Contributors’ Guide 26 contribute, welcome, checkout, severity
Design Document 10 architecture, design, framework, layer
License 30 disclaimer, free, law, reproduction
List of Contributors 18 authors, instructions, maintainers, thank
Release Notes 30 added, bug, date, fixed, improve, version
Requirement Document 10 feature, functionality, support, requirement
Setup Files 25 build, configure, defaults, ignore, manifest

decisions, underlying project framework and architec-
ture, as well as version compatibility details.

(3) License contain information about copyright and the
type of licenses the project operates under.

(4) List of Contributors contain information about and
credit to the authors and maintainers of the project,
including author names, their roles, and contact infor-
mation.

(5) Release Notes are usually documents shared with end
users or clients and outline specific version changes,
bug fixes, or enhancements made to the project.

(6) Requirement Documents often contain functional
and non-functional requirements, use cases, and other
software specifications that target expected user inter-
actions.

(7) Setup Files contain all artifacts that have to do with
project setup. Examples include manifest files, make
files, configuration files, and version requirement files.

During the manual classification, we identify 342 unique
features that characterize the categories in the above taxon-
omy. Some of those are based on their frequency of occurrence
in artifacts, while others are identified by the coders. We ob-
serve that five features are not present in any of the files in
our oracle. We remove those features and retain the remain-
ing 337 features that we will use for the automatic artifact
classification. Table 4 shows examples of the features we used
to identify each category and the distribution of artifacts in
our oracle. The complete list of features can be found in our
online replication package. Based on the in-depth analysis and
manual classification of 894 artifacts, the following conclusion
was drawn:

RQ1 Summary: Some software artifacts can be categorized
solely using heuristics based on file names and extensions.
However, other artifacts that are documentation related
require deeper analysis and identification of characterizing
features to be classified.

3.2 RQ2: How accurate is the proposed
approach for automatic software
artifact classification?

In this section we evaluate the performance of the automatic
artifact classification. We do not evaluate the classification of
non-document related artifacts, i.e., those listed in Table 2 as
those are correct by construction. Table 5 contains the results
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Table 5: Performance of individual classifiers and 10-fold cross-validation on the training dataset.

Classifier Parameters Class Precision Recall F-Measure MCC ROC

Naïve Bayes Multinomial Default Requirement Document 0.35 0.70 0.47 0.45 0.92
Design Document 0.63 0.50 0.56 0.53 0.93
Release Notes 0.69 0.83 0.76 0.69 0.97
Setup Files 0.86 0.48 0.62 0.59 0.94
License 0.94 1.00 0.97 0.96 1.00
List of Contributors 0.89 0.89 0.89 0.87 0.99
Contributors’ Guide 0.86 0.69 0.77 0.73 0.89

Micro Average 0.80 0.76 0.76 0.73 0.95
Macro Average 0.74 0.73 0.72 0.69 0.95

SMO Poly Kernel Default Requirement Document 0.40 0.40 0.40 0.36 0.86
Design Document 0.43 0.30 0.35 0.32 0.91
Release Notes 0.70 0.77 0.73 0.66 0.90
Setup Files 0.77 0.92 0.84 0.81 0.96
License 0.94 0.97 0.95 0.94 0.99
List of Contributors 0.82 0.78 0.80 0.77 0.95
Contributors’ Guide 0.81 0.65 0.72 0.68 0.87

Micro Average 0.75 0.76 0.75 0.71 0.93
Macro Average 0.69 0.68 0.69 0.65 0.92

Random Forest #Trees 500 Requirement Document 0.40 0.20 0.27 0.25 0.91
Design Document 1.00 0.30 0.46 0.53 0.97
Release Notes 0.65 0.73 0.69 0.60 0.94
Setup Files 0.71 0.88 0.79 0.74 0.95
License 0.91 1.00 0.95 0.94 1.00
List of Contributors 0.87 0.72 0.79 0.77 0.98
Contributors’ Guide 0.64 0.69 0.67 0.59 0.93

Micro Average 0.74 0.74 0.72 0.69 0.96
Macro Average 0.74 0.00 0.69 0.63 0.95

J48 MinNumObj 4 Requirement Document 0.27 0.30 0.29 0.23 0.70
Design Document 0.67 0.60 0.63 0.61 0.84
Release Notes 0.74 0.67 0.70 0.63 0.87
Setup Files 0.45 0.52 0.48 0.37 0.76
License 0.93 0.93 0.93 0.92 0.98
List of Contributors 0.43 0.50 0.46 0.38 0.79
Contributors’ Guide 0.55 0.46 0.50 0.41 0.82

Micro Average 0.62 0.61 0.62 0.55 0.84
Macro Average 0.58 0.57 0.57 0.51 0.82

of applying ML algorithms using 10-fold cross-validation. Re-
sults per class as well as the micro and macro averages across
classes are reported. Overall, Naïve Bayes Multinomial has
the best performance with a micro average precision of 0.80,
0.76 recall, 0.76 F-measure, 0.73 MCC, and 0.95 ROC. The high
values for MCC and ROC indicate that the classifier performs
very well on the validation dataset.

Values in bold indicate the best performance achieved per
class for both precision and recall. For example, at 0.74, J48 is
able to achieve the highest precision for the class Release Notes
relative to the other classifiers. However, at 0.83, Naïve Bayes
Multinomial achieves the highest recall for Release Notes. Each
algorithm achieves the best precision and recall performance
for at least one class, therefore, different algorithms may be
better suited to classify instances from different classes. Using
ensemble techniques, such as voting we are able to combine
the predictive power of several algorithms that perform well

on unique classes, to create one classifier with improved per-
formance across all classes.

Table 6 contains the results of classifiers used in Table 5
combined using ensemble learning. Specifically, the classifiers
are combined using majority vote. Results in Table 5 indicate
that Naïve Bayes Multinomial performs the best on several
different classes, therefore we increase the weight of its vote
during classification by two to create a weighted majority
vote, which has shown to be effective in similar text classi-
fication research [40]. As compared to the best performing
single classifier, majority vote yields a micro average precision
of 0.85, which is a 5% increase, recall increases by 6% to 0.82,
F-Measure increases by 7% to 0.83. MCC increases by 7% to
0.80 and ROC decreases to 0.90, which still indicates strong
performance.

Requirement Document is the class with the lowest per-
formance using both single classifiers and voting. However,
using voting we are able to achieve a better balance between
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precision and recall. The best precision and recall for the class
are both at 0.40 for single classifiers, however, with ensemble
learning precision drops by only 0.01 and recall increases by
0.26. Overall, voting improves the performance in terms of
precision and recall across all classes. The only exception is
with the class Setup Files for which SMO Polynomial Kernel
is able to achieve a 3% higher precision and 13% higher recall.
Despite this, comparing the micro average for all classes of
SMO Polynomial Kernel to the ensemble approach, the perfor-
mance trade off is a 10% increase in precision, 6% increase in
recall in favor of the ensemble approach.

In order to evaluate the model generated by the majority
vote algorithm, we run the classifier on a newly generated
oracle, the testing dataset, and analyze the results. Table 7
contains the results of the classifier on the second oracle of
59 data points. Overall, results for classes Contributors Guide,
List of Contributors, Design Documents, License, and Setup
Files are very similar, in term of F-Measure, MCC and ROC,
to the performance obtained on the first oracle. Release Notes
and Requirement Documents are two categories that perform
significantly worse with 0.35 decrease in precision for Release
Notes and 0.52 decrease in recall for Requirement Documents.
The results for these two classes affect the overall micro and
macro averages. 3 out of 7 instances from the Requirement
Document class are categorized as Release Notes and 2 out of
10 instances of Release notes are categorized as Requirement
Documents. We investigate the ML features across the differ-
ent types of artifacts to understand the drop of performance
in the testing dataset. Our analysis leads to two observations.
First, we note that there is a significant decrease in the num-
ber of documents containing the features for Requirement
Documents in the testing dataset. The second observation is
that there is an increased overlap of features between Require-
ment Documents and Release Notes in the testing dataset. One
explanation could be due to the fact that the features we manu-
ally created are not representative of Requirement Documents.
Another explanation could be due to fact that Requirement
Documents in the second oracle are considerably smaller in
size compared to the Requirement Documents in the first or-
acle. Thus, there might not be enough textual content, i.e.,
features, in the second oracle for the ML algorithms to per-
form well. We plan to further investigate and try to improve
the performance of ML features regarding the Release Notes
and Requirement Document artifacts in our future work by
adding more documents to the training set and by compar-
ing the performance of manually extracted features to that of
automatically extracted features using information retrieval
approaches.

RQ2 Summary: Combining different ML algorithms
through ensemble learning, we are able to automatically
classify documentation related software artifacts with an
average precision of 85% and recall of 82% using 10-fold
cross-validation on the validation dataset—an oracle of 149
data points. Using the same classifier on a testing dataset
of 59 new data points, our approach achieves an average
precision of 76% and a recall of 75%.

3.3 RQ3: What types of artifacts are created
during open-source software
development?

To explore the types of artifacts created during open-source
software development, we run our classification approach on
the entire sample set of 383 projects. Table 8 contains the
predicted distributions of various documentation and non-
documentation related artifacts created during open-source
project development. “Num. of Projects" (%) reports on the
number (percentage) of sampled applications that contain each
type of artifact. Overall, the most common type of artifacts
are source code, setup, miscellaneous, and archive, which are
identified in over 50% of the applications. The least common
type of artifacts are disk image and audio, which are identified
in less than 5% of the applications.

“Num. of Files" (%) in Table 8 reports on the number (per-
centage) of artifacts from each category across all sampled
applications. There is a total of 87,619 software artifacts in the
sample applications. We observe that documentation related
artifacts make up only 6.12% of all files. Further more, design
documents and requirement documents only make up 0.42%
and 0.68% respectively. Setup files account for 3.57% of the
total artifacts. As expected, source code makes up 56.79% of
the entire artifacts collection.

Focusing on documentation, we observe that 5.74% and
10.18% of the projects contain design and requirement docu-
ments, respectively. Taking into consideration that 4 projects
contain both design and requirement documents, the combi-
nation of projects that contain either type makes up 14.88% of
the sampled applications (22+39-4=57). Although documen-
tation related artifacts only accounts for a small portion of
the available artifacts, open-source projects can still be a good
resource for researchers for such artifacts.

RQ3 Summary: Using our automatic artifact classification
approach, we confirm that open-source projects provides a
variety of software artifacts. Approximately 14.88% of the
projects contain either design or requirement documents.

4 RELATEDWORK
This section discusses relevant literature. Section 4.1 discusses
related work using open-source software as a dataset, Sec-
tion 4.2 discusses related work pertaining to the categorization
of software artifacts, and Section 4.3 discusses related work in
text classification.

4.1 Open-Source Software as a Dataset
Godfrey and Tu [18] focus on the evolution of open-source
software development and examine 96 releases of the Linux
operating system kernel. This study aims to compare the evo-
lutionary narratives of open-source with commercially devel-
oped systems. However, only files with “.c” and “.h” extensions
are examined. Other source artifacts such as configuration
files and documentation are ignored.

Behnamghader et al. [2] introduce a framework for con-
ducting large-scale replicable empirical studies of architectural
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Table 6: Performance of the classifiers using ensemble learning and 10-fold cross-validation on the training dataset.

Classifier Class Precision Recall F-Measure MCC ROC

Majority Vote Release Notes 0.85 0.84 0.84 0.81 0.90
(2*Naïve Bayes Multinomial, Contributors’ Guide 0.90 0.78 0.84 0.81 0.88
SMO Poly Kernel, List of Contributors 0.99 0.86 0.92 0.91 0.93
J48, and Random Forest) Design Document 0.74 0.51 0.60 0.59 0.75

License 0.98 1.00 0.99 0.99 1.00
Requirement Document 0.39 0.66 0.49 0.46 0.79
Setup Files 0.74 0.79 0.77 0.72 0.87

Micro Average 0.85 0.82 0.83 0.80 0.90
Macro Average 0.80 0.78 0.78 0.76 0.87

Table 7: Performance of the classifiers using ensemble learning and 10-fold cross-validation on the testing dataset.

Classifier Class Precision Recall F-Measure MCC ROC

Majority Vote Release Notes 0.50 0.80 0.62 0.54 0.82
(2*Naïve Bayes Multinomial, Contributors’ Guide 0.90 0.82 0.86 0.83 0.90
SMO Poly Kernel, List of Contributors 0.86 1.00 0.92 0.92 0.99
J48, and Random Forest) Design Document 1.00 0.40 0.57 0.62 0.70

License 1.00 0.90 0.95 0.94 0.95
Requirement Document 0.33 0.14 0.20 0.15 0.55
Setup Files 0.75 0.90 0.82 0.78 0.92

Micro Average 0.76 0.75 0.73 0.70 0.85
Macro Average 0.76 0.71 0.70 0.68 0.83

Table 8: Distribution of the different types of software
artifacts in the sampled projects.

Software Category Num. of % Num. of %
Artifacts Projects Files

Documentation Design Documents 22 5.74% 371 0.42%
List of Contributors 33 8.62% 134 0.15%
Requirement Documents 39 10.18% 592 0.68%
Contributors’ Guide 54 14.10% 389 0.44%
License 84 21.93% 259 0.30%
Release Notes 93 24.28% 489 0.56%
Setup Files 235 61.36% 3,130 3.57%

Subtotal 5,364 6.12%

Non- Disk Image 1 0.26% 4,209 4.80%
Documentation Audio 5 1.31% 83 0.09%

Project 25 6.53% 68 0.08%
Font 31 8.09% 201 0.23%
Application 32 8.36% 121 0.14%
Testing Code 92 24.02% 3,766 4.30%
Image 126 32.90% 10,212 11.66%
Source Code 217 56.66% 49,680 56.70%
Misc 236 61.62% 13,380 15.27%
Archive 236 61.62% 535 0.61%

Subtotal 82,255 93.88%

Total 87,619 100%

changes across different versions of 23 open-source software
systems. The findings of this work bring new insights about
the frequency of architectural changes in software systems.

Munaiah et al. [36] propose a framework that help researchers
to identify GitHub repositories which contain engineered soft-
ware projects. The proposed work defines dimensions that are
used to classify software engineered projects through validat-
ing the existence of such dimensions in GitHub repositories.

Tian et al. [48] propose a technique using LDA to auto-
matically categorize open-source applications. The proposed
technique, called LACT, is evaluated in two studies and the
results show that LACT is able to effectively and automatically
categorize software systems regardless of their programming
language.

Vendomo et al. [51] conduct an empirical study aiming at
identifying and automatically detecting exceptions in open-
source software licenses by relying on machine learning. They
analyze the source code of 51K projects written in six program-
ming languages and identify 14 different license exception
types.

Zogaan et al. [56] present an empirical study and propose
two automated techniques to generate traceability training
datasets from technical programmingwebsites and open-source
software repositories. The proposed techniques use both Web-
Mining and Big-Data Analysis to generate the training datasets
and categorize them based on tactic-related code-artifacts. In
their Big-Data approach, they use machine learning classi-
fiers to detect tactic-related files that could be used as training
datasets.

Caniell et al. [5] present a dataset that contains source code
and related metadata of FOSS history for the Debian operating
system. This dataset contains over 30 million code files in C
and C++ along with their related metadata files.

In addition, there are a number of projects in the area of
mining open-source software repositories [15, 55] with primar-
ily focus on studying the source code and coding issues. There
is a limited experimental research on using such resource to
generate scientific datasets with diverse artifacts.
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Our study complement and advances existing work. We
propose an automated approach based on heuristics and ma-
chine learning techniques to identify various types of software
artifacts that could assist researchers and practitioners in mul-
tiple sub-domains of software engineering to find appropriate
datasets that fit their need.

4.2 Categorization of Software Artifacts
Robles et al. [41] analyze source code artifacts from versioning
repositories beyond source code and provide insights into soft-
ware projects from both a technical and management point
of view. Robles et al. [42] propose a semi-automatic approach
that determines the availability and quantity of documenta-
tion and source code comments in a libre software package.
In both studies, only file extensions and names are utilized
to identify the different types of files. Our approach is com-
plementary to this study since we use file content in addition
to file name and extension when classifying artifacts. We use
manually extracted features and machine learning algorithms
to classify documentation related artifacts thus proposing a
fully automated approach.

Gousios and Zaidman [20] introduce pullreqs, a dataset of
almost 900 OSS GitHub projects and 350,000 pull requests that
are used to study the pull request distributed development
model. The main focus of their study is to understand the prin-
ciples that guide pull-based development. Do et al. [13] design
and construct an infrastructure to support controlled experi-
mentation with testing techniques. The infrastructure includes
artifacts (programs, versions, test cases, faults, and scripts) that
enable researchers to perform controlled experimentation and
replications. While these studies provide artifacts that can
be used to improve the understanding of one aspect of OSS
development, we complement these works by automatically
detecting and categorizing multiple OSS artifacts, which can
be beneficial to various OSS development activities.

Mirakhorli and Cleland-Huang [35] present an approach
using ML to discover architectural tactics in code. The ML
classifier is trained using code snippets extracted from OSS
systems to automatically detect and categorize code-related
files that contain ten common architectural tactics. Our study
is not limited to a specific artifact type. Instead, we categorize
both documentation related and non-documentation related
artifacts, including but not limited to code related files.

Kalliamvakou et al. [26] conduct a study to understand the
characteristics of the repositories and users in GitHub. They
analyze a GHTorrent dump [17] to identify a set of perils
that software engineering researchers should consider when
utilizing GitHub repositories in their studies. While this study
focuses on the projects and users characteristics, we analyze
and classify software artifacts.

4.3 Text Classification
Linares-Vásquez et al. [29] extract APIs used by applications
as attributes for categorization of their application domain and
explore the performance of five different ML algorithms. The
performance of the algorithms when using API methods and

packages as features is compared to the performance of the
algorithms when using terms from source code. Results show
that the accuracy when using API methods and packages is
as good as the accuracy when using terms from source code.
The best results, i.e., 0.67 average precision and 0.67 average
recall, are achieved using SVM with a linear kernel.

Abu-Nimeh et al. [1] explore the performance of six ML al-
gorithms for email text classification. They report that RF and
logistic regression are among the top performing classifiers
on their dataset, however all approaches achieve high perfor-
mance. RF outperforms all other classifiers with an error rate
of 7.72% when legitimate and phishing emails are weighted
equally. Logistic regression outperformed all classifiers achiev-
ing the minimum weighted error rate of 3.82% when applying
cost-sensitive measures.

Ye et al. [54] explore the performance of Naïve Bayes, SVM,
and character based N-gram model for sentiment classifica-
tion on text-based travel reviews. Their results indicate that
SVM preforms the best, however, on large datasets all three
algorithms achieve an accuracy of at least 0.80.

Pascarella and Bacchelli [37] propose a taxonomy and an
automated approach using ML to classify comments in source
code. They use the Naïve Bayes Multinomial algorithm, which
is shown to achieve a weighted average TPR of 0.85 on the val-
idation dataset and 0.74 on a cross-project validation dataset.

Similarity, our approach for overall software artifact classifi-
cation achieves good performance, i.e., 0.82 weighted average
recall and 0.75 on unseen dataset.

5 THREATS TO VALIDITY
This section discusses threats to validity that can affect our
study.

Threats to conclusion validity relate to issues that could
affect the ability to draw correct conclusion about relations
between the treatment and the outcome of an experiment. One
issue related to conclusion validity is the representativeness of
sample used to validate the availability of documentation for
open-source projects. We analyzed a random sample consider-
ing 95% confidence level and ± 5% margin of error. Another
threat to validity might be related to the identification of cate-
gories for software artifacts. We use Cohen’s kappa to ensure
consistent rating between the two coders. Lastly, we report re-
sults using appropriate diagnostics for the performance of the
ML algorithms, such as ROC and MCC and when discussing
findings we keep into account acceptable ranges for ROC and
MCC (i.e., ROC ≥ 0.5 and MCC > 0).

Threats to internal validity concern the relation between the
independent and dependent variables and factors that could
have influenced the relation with respect to the causality. As
explained in Section 2.3.3, ML algorithms are trained with
manual tuning of some parameters. It is possible that better
results could be obtained by employing automatic parameter
tuning tools, such as Auto-WEKA [47]. This would simply
mean that our results represent a lower-bound. Another threat
is the calibration of the threshold used to identify files with
insufficient information. Indeed, different values could have
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produced different results and could have affected the assess-
ment of the proposed approach. Although the threshold is
experimentally determined, this does not guarantee that the
choice is optimal for the entire universe of software artifacts.

Threats to construct validity concern the relation between
theory and observation. In this study, such threats are mainly
due to measurement errors. As for precision and relative re-
call, the manual validation could be affected by subjectiveness
of the coders or human error. If we conduct the experiment
with different coders, the results might not be the same. To
mitigate these threats, the oracle was created by two persons
independently and, in case of different classification, a discus-
sion, and if needed a third person was asked to perform the
classification.

Threats to external validity concern the generalizability
of the findings outside the experimental settings. Potential
threats to external validity in this study include the selec-
tion of sampled open-source applications, which may not be
representative of the studied population. To minimize this
threat, we aimed to extract applications of various size and
programming languages from GitHub. During the extraction
process, we did not filter out projects based on project quality
or project characteristics such as engineered projects as de-
fined by Munaiah et al. [36]. Thus, the availability of artifacts
in engineered projects might differ from what we observe in
our random sample. Another potential threat is the manual
nature of the feature creation process that could lead to overfit-
ting the features to a particular dataset. However, to mitigate
this threat we sample artifacts from over 300 projects which
greatly reduces the chance of overfitting features. Additionally,
we test the generalizability of our results on a second, unseen
oracle, i.e., the testing dataset, to ensure acceptable accuracy
of the classification model on new data. One further issue is
the size of the dataset we used. Our results are reported on
about 208 total data points (159 for training and validation, 59
for testing). The size of our dataset might be considered small.
However, it is tied to the manual effort required to classify
those software artifacts.

Threats to reliability validity concern the ability to replicate
a study with the same data and to obtain the same results. We
use open-source software projects whose source code is avail-
able. Moreover, we provide all necessary details to replicate
the analysis in our online replication package [31].

6 CONCLUSION AND FUTUREWORK
This paper presents an automated approach to classify open-
source software artifacts. The proposed approach is rigorously
evaluated and results indicate that a combination of ML algo-
rithms using ensemble learning outperforms individual classi-
fication techniques. Our approach is applied on 383 randomly
selected open-source projects to investigate what types of soft-
ware artifacts are generated in open-source projects. Results of
this empirical study indicate that besides source code, around
14.88% of open-source projects contain other forms of artifacts
such as requirements and design documents that are of interest
to software engineering researchers.

Work-in-progress includes building an add-on for GitHub
to identify and visualize which artifacts are in place and which
ones are missing for a particular project. We envision that
the add-on can be useful to evaluate the quality of a project
and to determine whether it satisfies certain documentation
standards. Additionally, we will investigate the use of infor-
mation retrieval approaches for automatic feature extraction
of Release Notes and Requirement Document artifacts and we
will construct a larger oracle to improve the performance of
the classifiers. Finally, we plan to expand the approach to other
forms of artifacts and explore multi-label text classification
techniques.
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