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CRITICAL DYNAMICS IN COUPLED BOOLEAN NETWORKS WITH

APPLICATIONS IN PLURIPOTENT STEM CELLS

Abstract

by Chris Kang, Ph.D.
Washington State University

May 2023

Chair: Nikolaos K. Voulgarakis

The spontaneous emergence of order is one of the fundamental features in complex

systems. Embryogenesis and stem cell differentiation, for example, are highlighted by

spontaneous phase transitions of disorder-order in its developmental cycle, resulting

in a new functional life form. In this thesis, we examine the existence of characteristic

signatures of disorder-order phase transitions in populations of isogenic cells whose

gene regulatory networks are modeled as Boolean networks, motivated by the studies

in pluripotent stem cells.

We present a model for coupled random Boolean network whose interaction rules

are governed by the mulitilayer Ising Hamiltonian. Our approach allows for model-

ing multiple, biologically plausible intercellular signaling effects (paracrine, autocrine,

and external fields). The model demonstrates an emergence of cell types in popula-
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tions, which can be verified by three modes of analysis: (1) spectral decomposition

of cell type distributions, (2) linear optimization method, and (3) a machine learn-

ing approach based on non-negative matrix factorization. Statistical analyses show

that coupled random Boolean networks exhibit signatures of a second-order phase

transition in cell type composition due to a combination of cell-cell cooperativity

and intrinsic noise in its population. Near critical states in its parameters, stem

cell populations undergo a spontaneous phenotypic transition, characterized by the

symmetry-breaking events. Here, we show that this transition is possible through

proper interplay of cell-cell cooperativity and intrinsic noise. Moreover, the system

displays a first-order phase transition in the presence of external stimuli. We consider

the effects of different sizes in control genes, specifically, the control kernel (CK) set.

We see that dynamically pinning CKs with the mulitilayer Ising Hamiltonian can

generate new cell types and demonstrate cell-to-cell variability in model simulations.

Finally, we present that cells can collectively self-tune through a critical transition,

which allows them to decide their fate. This behavior is seen with an internal dy-

namical system of a negative feedback between tissue heterogeneity and intrinsic

noise, and the result is compared to recent experimental studies of mouse embry-

onic stem cells. Under strict conditions, the model captures experimentally-observed

qualitative behaviors of multilevel transitions in cell type heterogeneity; that is, a

unimodal-bimodal transition of cell states at the cellular and colony level.
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CHAPTER ONE

INTRODUCTION

In the seminal work The Origins of Order, Stuart Kauffman challenges the status

quo in the long-standing canons of evolutionary theory [1]. He argues that Darwin’s

theory of natural selection, where populations acquire and select for useful mutations

over time, stands as an incomplete explanation of evolution, given that not all com-

plex systems are equipped with the ability for successful adaptation. Seemingly, it

suggests that there must be a characteristic feature in complex systems that allows

one to perform successful natural selection, whereas others fail. He suggests that a

fundamental feature of life is spontaneous emergence of order and proposes a new

paradigm in evolutionary theory; a “marriage” of ideas between self-organization and

natural selection. Borrowing from [2], we can define self-organization as the rise of

nontrivial collective behaviors between interactions of multiple microscopic compo-

nents1. Examples of studies in self-organization are commonly rooted in physics and

statistical mechanics; i.e., the lattice formation of crystalline solids and the alignment

of magnetic dipoles, which are systems well studied in statistical mechanics. It is no

1We note that historically, self-organization has a loose definition [2]. After an exhaustive sur-
vey of inconsistent use of the phrase “self-organization” in the literature, Halley and Wrinkler have
proposed a unifying definition; that self-organization is a “dissipative nonequilibrium order at macro-
scopic levels, because of collective, nonlinear interactions between multiple microscopic components.”
This definition makes a distinction between self-organization and self-assembly, whose implication
is lengthy and therefore not within the scope of this work.
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surprise that Kauffman’s suggestion of self-organization has a thermodynamic basis.

In the context of evolution, it is reasonable to believe that complex systems capable

of constraining the release of (thermodynamic) energy carry qualitatively “ordered”

behaviors that can select for successful adaptation [3, 4]. To uncover the struc-

tural and behavioral mechanisms necessary for this emergence of self-organization

and adaptive evolution in a system, one requires a dynamical system that includes

the coupling of many components whose complexity can be easily studied. Kauffman

proposed a simple model abstraction for the gene regulatory network: the Boolean

network (BN) [5]. A Boolean network models the complex dynamics of a gene regula-

tory network with little assumption, and by analyzing ensembles of random Boolean

networks (RBNs), high-level features can be captured. Recent decades of research

in combination of in silico models and in vitro experiments have provided a solid

ground for Kauffman’s theory that systems best suited to adapt to evolutionary mu-

tation and selection are those structured to exist on the phase boundary of order and

chaos [6, 7, 8, 9, 10, 11, 12, 13].

Although many have focused on the dynamic complexity and phase transition of a

single cell, few have studied collective behaviors of cells at a higher order. Phase tran-

sitions are the driving forces of many phenomena at the multicellular-level [14, 15, 16].

In this work, we derive biological motivation from pluripotent stem cells (PSCs).

Pluripotent stem cells, such as embryonic stem cells (ESCs), form and differentiate

2



into specific cell lineages. Many recent experiments support the hypothesis that stem

cells present heterogeneity in gene expression patterns at population level to differ-

entiate [17, 18, 19]. That is, intercellular cooperation between microscopic agents is

a critical feature in the long-term development of cellular fate in stem cells [20, 21].

To quote, MacArthur and Lemishka describe the developmental potency of stem cells

“to be positively related to macrosocopic population entropy” [22] and have suggested

that in order to understand the emergence in pluripotency, it is useful to consider

stem cells in terms of their cellular macrostate [23, 24]. If this is indeed true, one

can envision the existence of a macroscopic critical state and the characteristic phase

transition in its system of PSCs (as depicted by Kauffman), and it entails further

exploration.

Stem cell populations meet three necessary conditions to potentially facilitate a

phase transition. First, each stem cell is an identical agent whose dynamics is de-

termined by the molecular interactions between genetic regulators [25], which under

most conditions maintain its own population [26]. Second, cells interact with each

other and their extracellular environment through autocrine and paracrine signal-

ing [27, 28, 29, 30, 31, 32]. Third, the dynamics of stem cell populations is subject

to intrinsic noise owing to the molecular nature of intra- and intercellular interac-

tions [33, 34, 35, 36]. The essential question demanding an answer is whether it is

indeed possible for stem cells to embrace and properly buffer intrinsic noise to reach

3



the hypothesized critical state [23].

In our work, we observe signatures of spontaneous phase transition in multicel-

lularity (i.e., populations of isogenic cells differentiating to specialized cells) which

undergoes a series of symmetry-breaking events given different levels of complexity in

its cellular cooperativity, intrinsic noise, external influence, and the structure of a BN.

In our previous study, the formation of phenotypic (checkerboard) patterns, measured

as long-term steady-state distributions of cells, was observed in model simulations of

tissues of isogenic cells near the critical complexity (Lyapunov exponent), where cells

were coupled with a linear threshold function [37]. In this work, we show that such

pattern formation is not restricted to a checkerboard, as we explore macrostate be-

haviors of tissues through the lens of statistical mechanics. We develop a multilayer

Ising Hamiltonian model that captures different modes of intercellular communi-

cation between BNs seen at the tissue level: paracrine, autocrine, and external field

effects. Through model simulations, we show a second-order phase transition of cou-

pled BNs in a heterogeneous cell type population. Specifically, we demonstrate that

the transition from a highly excited state of pluripotent population [25, 38, 39] to

one in the phenotypic ground state (differentiated cell types) is possible by proper

buffering of intrinsic noise. We draw this parallel to the disorder-order transition

in statistical mechanics. The emergence of new cell types can be verified through

three different forms of analysis: (1) spectral decomposition of cell type distributions,

4



(2) linear optimization method, and (3) a machine learning approach based on non-

negative matrix factorization. Additionally, we are able to show that coupled BNs are

capable of exhibiting a first-order phase transition in different cell type populations

in the presence of external stimuli.

In conjunction, we demonstrate that cells can collectively self-tune through a crit-

ical transition, which allows them to decide their fate. We are able to observe this

collective phenotypic behavior with an internal dynamical mechanism, where there

is a negative feedback between tissue heterogeneity and intrinsic noise. The model

comparison shows that under strict restrictions, our results capture the qualitative

behaviors of the multilevel unimodal-bimodal transition in gene expression patterns

observed in experimental studies by Okamoto et al.. The differentiation process of

mouse embryonic stem cells has been shown to require collective biophysical cooper-

ativity and intrinsic fluctuation of cells in the colony [20].

This work is structured as follows. Chapters 2 and 3 serve as a conceptual overview

of the tools necessary for the development of the coupled BN model. In Chapter 2, we

review phase transitions, the Ising model, and its mean field approximation. Chap-

ter 3 provides a background review of Boolean networks, and we the develop the

notion of steady-state distributions as cell types. In Chapter 4, we introduce stochas-

tic control kernel in BNs. In Chapter 5, we present the multilayer Ising Hamiltonian

and its simulation methods. We follow with a discussion on different approaches to

5



analyzing the simulation outcomes of the multilayer Ising Hamiltonian, specifically

cell type detection methods in Chapter 6 . In Chapter 7, we present the numer-

ical results of the multilayer Ising Hamiltonian, and analyze phase transitions and

symmetry-breaking in stem cell tissue populations with different sizes of control ker-

nel. In Chapter 8, we show a simple self-tuning dynamical system which describes

the negative feedback between cell type heterogeneity and intrinsic noise, and com-

pare the model outcome with the Okamoto et al.’s mESC experimental results. We

conclude and discuss future directions in Chapter 9. Parts of Chapters 4, 5, 6, 7, 8

have appeared in [40].
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CHAPTER TWO

THE ISING MODEL

2.1 Introduction

Our long-term goal is to develop an all-encompassing intercellular dynamics for

a model population of isogenic cells. Thus, we develop the tools necessary to model

coupled Boolean networks.

The Ising model has had wide applications in modeling biophysical phenomena

in the last two decades. In what would become the first of many energy-based mod-

els for biophysical properties of cell-cell interactions, Graner and Glazier presented a

Potts Hamiltonian that replicated cellular arrangements (cell sorting) in embryogen-

esis [41]. This work had a significant impact on modeling morphogenetic behaviors.

Subsequent work, aided by advances in computational speed, catapulted a new field

of multiscale modeling known as the cellular Potts model (CPM) [42, 43]. CPM has

been used to model many population-level cellular properties ranging from motility

and displacement [44, 45, 46, 47] to chemical signaling (or adhesion) in tissues [48].

This chapter serves as the preliminary review of the Ising model, a special case of

the Potts model, which we employ in Chapter 5. We examine the two-dimensional

(2D) standard Ising model, as it is one of the simplest systems of identical agents that

are coupled, whose phase transitions in the order parameter are well studied [49]. We

approximate the solution of the 2D Ising model with the Weiss mean field theory
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(MFT) approach1 [50]. Finally, we briefly discuss the Potts Hamiltonian.

2.2 Ising model

The first development of the Ising model (also known as the Ising-Lenz model)

dates back to 1925 when Ernst Ising derived the partition function for the magne-

tization of a one-dimensional ferromagnetic lattice in his doctoral dissertation [51].

Although Ising often received credit for his work, Wilhem Lenz, his research director,

had proposed the idea five years prior. In 1941, Kramers and Wannier derived the

first quantitative result for the 2D Ising model [52]. Although this was not an exact

closed-form solution, it was the first of many approximation approaches to follow

for the Ising model. We first discuss numerical approximations of the Ising model

in Section 2.3. Then, we introduce the Weiss mean field theory approximation in

Section 2.42 [53].

Consider a rectangular arrangement of atoms. For each atom, there is an associ-

ated magnetic dipole that determines the atomic spin. We consider only two directions

for the spin si ∈ {−1,+1}, where si = +1 corresponds to “up” and si = −1 corre-

1Accompanying supplemental information related to the Landau theory of phase transitions is
provided in Appendix C.

2Lattices of higher-dimension (d > 2) have been extensively studied, which are not within the
scope of this discussion.
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sponds to “down” for a spin site i. A configuration denotes the set of spin orientations

of a lattice. We assume that each atom of i interacts with the nearest neighbors j’s

and denote all distinct coupling pairs of neighbors in the Von Neumann directions as

⟨i, j⟩. Then, the total energy, Hamiltonian, of the Ising model is given by

E = −J
∑
⟨i,j⟩

sisj, (2.1)

where J is the coupling constant or the interaction strength between neighboring

spins. Such system always attempts to evolve towards a ground state, i.e., the config-

uration that minimizes the energy. Examples of magnetic ground state are ferromag-

netism, antiferromagnetism, and paramagnetism. For the Ising model with J > 0,

the system prefers ferromagnetism, where the spins are aligned unidirectionally. With

J < 0, the system prefers antiferromagnetism, where the spins are aligned in opposite

directions. With J = 0, the spins are uncoupled.

If the system is exposed to an external field, a second term is introduced in its

Hamiltonian.

E = −J
∑
⟨i,j⟩

sisj − µH

N∑
i=1

si, (2.2)

where µ is a magnetic moment, H is an external magnetic field, and N is the number

of lattice sites. For convenience, we will use a single constant µH = h to describe the
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constant strength of an external field, where h > 0 indicates the magnetic field in the

direction of positive spin. Thus,

E = −J
∑
⟨i,j⟩

sisj − h
N∑
i=1

si. (2.3)

The transition from a globally ordered state of ferromagnetism or antiferromag-

netism to paramagnetism, where the spins are disordered due to thermal fluctuations

(the strength of which is controlled by the magnet’s temperature T ), can be studied

with magnetization,

m =
N∑
i=1

1

N
si, (2.4)

the excess spin (energy) proportion of a system. In the canonical ensemble, average

spin of a site ⟨si⟩ is the thermodynamic average
Tr

(
si·e

− E
kBT

)
Z

(kB is the Boltzmann

constant, and Z is the partition function)3.

3Following the notation of [50], the details of the partition function are provided in Section 2.4.
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2.3 Phase Transitions

We distinguish between two types of phase transition, also known as Ehrenfest

classification4 [54, 55]. First-order phase transition is characterized by a discontinuity

in its free energy as it transitions from one phase to another. In contrast, second-

order phase transition describes a continuous change of the ground state energy. The

second-order phase transition is analytic under the first-derivative and discontinuous

under the second-derivative. Both phase transitions are possible due to the variation

of a control parameter. For the Ising model, in the first-order, the control parameter

is h, while in the second-order, the control parameter is the temperature T . The

second-order phase transition occurs at the critical temperature Tc also known as the

Curie temperature [56]. The first-order phase transition occurs at h = 0, for T < Tc.

The 2D Ising model has been well studied for the precise reason that it demon-

strates experimentally observed phase transitions. Lars Onsager’s closed analytical

solution to the zero-field 2D Ising model (the result being that the system undergoes

a second-order phase transition at the critical temperature of Tc =
2

ln(1+
√
2)

≈ 2.269)

provided in 1944 [57] has brought forth great advances in the theory of phase tran-

sitions [54]. For the purpose of this work, Onsager’s solution is omitted here as it

4There is a rich history of how the original Ehrenfest classification of phase transitions was
challenged and refined over the years [54]. We spare the details of scientific evolution and use
colloquial definitions of phase transition.
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has little relevancy in the model development. Instead, we present a more common

approach to the solution to Equation 2.3: a numerical approximation with the Monte

Carlo (MC) method. The Metropolis algorithm is a popularly used Markov chain

Monte Carlo method to efficiently sample and sweep spin sites of large systems (Ap-

pendix A). In the Metropolis algorithm, temperature T is used in the Boltzmann

distribution to either accept or reject its proposal to flip a spin. In other words, T

serves as a thermal, intrinsic noise of the system.

In numerical simulations of the Ising model, the run time and size of the system

are finite. This requires to approximate the order parameter of a system in some

simulation time T , after an equilibration time of teq, for a sufficiently large d number

of simulations. For the magnetization of a configuration at time t,

mt =
N∑
i=1

1

N
si(t), (2.5)

let us define the order parameter for the second-order phase transition as the ensemble

average of the absolute magnetization after equilibration:

m =
1

d

d∑
j=1

1

T

teq+T∑
t=teq+1

|mt| . (2.6)

Figure 2.1 shows the plot of the order parameter (m) as a function of temperature (T ),

where d = 200 simulations were performed and averaged for each temperature point
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of the 2D Ising model without external field (h = 0). A lattice size of N = 64 × 64

was used, and each simulation run was initialized with a random spin configuration.

After time teq = 210 of the “burn-in” period for equilibration, magnetization was

averaged over the span of T = 211 MC steps. T was uniformly sampled from a

range of T ∈ [1.53, 3.28]. In Figure 2.1, we observe that the magnetization drops to

approximately 0 at Tc ≈ 2.269, which is the critical temperature of the exact solution

by Onsager.
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Figure 2.1: Second-order phase transition diagram (m vs. T ) for a 2D Ising model
with zero external field (h = 0). Each point corresponds to a temper-
ature in the range of T ∈ [0, 4.0] and the lattice size of 50 × 50. After
a burn-in period of teq = 210 time steps, T = 211 MC steps were used
to compute the order parameter (m). The simulations were arbitrar-
ily sampled from three respective temperature domains of T < 2.269,
T ≈ 2.269, and T > 2.269, and snapshots of the spin configurations
were taken: (a), (b), and (c). Snapshots show different patterns in
spins according to the temperature domain: (a) spins are mostly or-
dered (uniform orientation), (b) spins form fractal-like structure of spin
islands, and (c) spins are disordered and show no decisive pattern.

Observing snapshots of spin configurations for individual simulations reveals im-

portant behaviors of the net magnetic moment of the lattice. For example, Figure 2.1

(a) shows the snapshot of a simulation with T < Tc at time t = teq+T . For low tem-
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perature (“quenched state”), the system orients itself unidirectionally, as the spins

prefer net ferromagnetism as the entropy of the system is low5. At T ≈ Tc (Figure 2.1

(b)), the spins change in pattern formation and arrange in fractal -like structures of

spin islands [58]. With a high temperature (T > Tc), thus high in entropy of the

system, the spins are randomly oriented (disordered) in their pattern (Figure 2.1

(c)).

When there is an external field (h ̸= 0), the first-order phase transition can be ob-

served. Define the order parameter for the first-order phase transition as the ensemble

average of the magnetization after equilibration:

m =
1

d

d∑
j=1

1

T

teq+T∑
t=teq+1

mt. (2.7)

Monte Carlo simulations of the 2D Ising model with varying external field (64 × 64

lattice) is shown in Figure 2.2. For three fixed temperature points of T = 2, 2.269, 2.8,

and for 120 uniformly sampled values of h ∈ [−1, 1], we see that the first-order phase

transition occurs at the critical external field, hc = 0 with low temperatures T < Tc

(i.e., T = 2); the net magnetization of the system jumps from m = −1 to m = 1.

Furthermore, when there is a sudden shift in the external field with little equi-

libration time, there is a delay in the switch in magnetization, which constitutes

5The Helmholtz free energy equation and Gibbs entropy are briefly mentioned in Section 2.4.
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Figure 2.2: Simulations of the 2D Ising model with varying external field plotted as
m vs. h. Three fixed temperature points were used: T = 2, 2.269, 2.8
for 120 values for h in the range of h ∈ [−1, 1]. For low temperatures
T < Tc (i.e., T = 2), the first-order phase transition can be observed at
the critical external field hc = 0.

hysteresis6. We reserve a more in-depth discussion of the first-order phase transition

for Chapter 7.

We leave a brief mention of another frequently used tool to analyze the 2D Ising

model: magnetic susceptibility. The magnetic susceptibility of the 2D Ising model

6See Appendix C.0.2 for further discussion on hysteresis.
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can be calculated by

χ =
N

T

(
⟨m2⟩ − ⟨|m|⟩2

)
, (2.8)

where in this case, we define each term as the following:

⟨m2⟩ = 1

d

d∑
j=1

1

T

teq+T∑
t=teq+1

m2
t (2.9)

and

⟨|m|⟩2 =

1
d

d∑
j=1

1

T

teq+T∑
t=teq+1

|mt|

2

. (2.10)

Magnetic susceptibility measures the sensitivity (or linear response) induced by a

magnetic field.

2.4 Mean Field Theory

When deriving the analytical solution of an Ising model, we solve the canonical

partition function because it provides thermodynamic information about a system,

such as its free energy and average spins. The partition function for the Ising model
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is

Z = Tr

(
exp

(
−E
kBT

))
, (2.11)

where E is the Hamiltonian from Equation 2.3. The derivation for Equation 2.11 is

provided in Appendix B. With the solution to the partition function, it is possible

to derive thermodynamic functions of the system using tools of statistical mechanics

and determine whether a system undergoes a phase transition [51].

However, for many Hamiltonians, solving for the partition function is a challenging

task. Specifically, the existence of correlations in the interactions between the spins

(i.e., −
∑

⟨i,j⟩ Jsisj) makes it particularly difficult to solve analytically. While On-

sager’s close analytical solution was previously mentioned in Section 2.3, we discuss

an approximation method instead, which is more suitable for complex models that

cannot be solved analytically: the Weiss mean field theory approach [53]. The general

strategy of MFT is to (1) take advantage of translational invariance of the magnetic

dipole, (2) consider the average spin of neighboring sites, effectively decoupling the

system to a single equation, and (3) finally approximating the solution to the par-

tition function. We closely follow and owe much of the derivation to Utermohlen’s

work [50].

We express any degree of freedom, such as a spin variable si, in terms of its mean

value ⟨si⟩ and its fluctuation ∆si = si − ⟨si⟩. Thus, the spin interaction term sisj
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can be written as

sisj = (⟨si⟩+∆si) · (⟨sj⟩+∆sj) (2.12)

= ⟨si⟩⟨sj⟩+ ⟨sj⟩∆si + ⟨si⟩∆sj +∆si∆sj. (2.13)

We approximate by truncating the quadratic fluctuation term, ∆si∆sj. Then

sisj ≈ ⟨si⟩⟨sj⟩+ ⟨sj⟩∆si + ⟨si⟩∆sj (2.14)

= ⟨si⟩⟨sj⟩+ ⟨sj⟩(si − ⟨si⟩) + ⟨si⟩(sj − ⟨sj⟩) (2.15)

= si⟨sj⟩+ ⟨si⟩sj − ⟨si⟩⟨sj⟩. (2.16)

The system is translationally invariant; ⟨si⟩ = ⟨sj⟩ = m. Thus,

sisj = si⟨sj⟩+ ⟨si⟩sj − ⟨si⟩⟨sj⟩ (2.17)

= sim+msj −m2 (2.18)

= m[(si + sj)−m]. (2.19)
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We can now apply mean field approximation on the Hamiltonian as the following:

E = −J
∑
⟨i,j⟩

sisj − h
N∑
i=1

si (2.20)

= −J
∑
⟨i,j⟩

m[(si + sj)−m]− h
N∑
i=1

si (2.21)

= −Jm
∑
⟨i,j⟩

[(si + sj)−m]− h

N∑
i=1

si. (2.22)

With the symmetry of the configurations
∑

⟨i,j⟩ si =
∑

⟨i,j⟩ sj,

E = −Jm
∑
⟨i,j⟩

[2si −m]− h
N∑
i=1

si. (2.23)

We can rewrite
∑

⟨i,j⟩ as a single sum q
2

∑N
i=1, where q is the number of neighbors in

the lattice. Then,

E = −Jmq

2

N∑
i=1

[2si −m]− h
N∑
i=1

si (2.24)

= −Jmq

2

N∑
i=1

2si −
(
−Jmq

2

)
·Nm− h

N∑
i=1

si (2.25)

=
NqJm2

2
− qJm

N∑
i=1

si − h
N∑
i=1

si (2.26)

=
NqJm2

2
− (h+ qJm)

N∑
i=1

si (2.27)

=
NqJm2

2
− heff

N∑
i=1

si. (2.28)
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We combine the constant terms of Equation 2.27, (h+qJm), to define a single effective

constant term heff, the effective magnetic field influenced on the spins. Here, we have

reduced our Hamiltonian from Equation 2.3 to a single site problem in Equation 2.28.

The Hamiltonian has been decoupled, such that the magnetization no longer relies

on the interaction of neighboring sites7.

Now, the mean field approximation allows us to solve for the partition function.

Noting that β = 1
kBT

:

Z =
N∑
i=1

exp

−β

−
∑
⟨i,j⟩

Jsisj − h
N∑
i=1

si

 (2.29)

=
N∏
i=1

(∑
si=±1

)
exp

(
−E
kBT

)
(2.30)

=
N∏
i=1

(∑
si=±1

)
exp

−
(

NqJm2

2
− heff

∑N
i=1 si

)
kBT

 (2.31)

=
N∏
i=1

(∑
si=±1

)
exp

(
−NqJm

2

2kBT

)
exp

(
heff
kBT

N∑
i=1

si

)
(2.32)

= exp

(
−NqJm

2

2kBT

) N∏
i=1

N∑
si=±1

exp

(
heffsi
kBT

)
(2.33)

7We note that the Ising model is one of the earliest Markov network models. In fact, it is a
Markov random field with a 4-point clique (neighborhood) and thus, by the Hammersley-Clifford
Theorem, it has a probability distribution of the form of a Gibbs distribution [59, 60]. While here,
we used the mean field approach to decouple the spins in the Hamiltonian, other approaches such as
the aforementioned use of cliques are also viable. However, the discussion for Markov random field
is not within the scope of this section.
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= exp

(
−NqJm

2

2kBT

) N∏
i=1

(
exp

heff
kBT

+ exp− heff
kBT

)
(2.34)

= exp

(
−NqJm

2

2kBT

)(
2 cosh

heff
kBT

)N

(2.35)

Recalling the partition function, we substitute Z from Equation 2.35 into Equa-

tion B.8 to arrive at an explicit equation:

m =
1

N

N∑
i=1

⟨si⟩ =
1

N

N∑
i=1

Tr
(
si · e

E
kBT

)
Z

(2.36)

=
1

N

1

Z

N∑
i=1

si exp

(
− E

kBT

)
(2.37)

⇒ m = tanh
h+ qJm

kBT
. (2.38)

Equation 2.38, also known as the self-consistency equation8 The self-consistency equa-

tion cannot be solved analytically. However, it can be easily graphed with a numerical

software. The graph of net magnetization (|m|) of Equation 2.38 can be seen in Fig-

ure 2.3.

8This derivation requires a careful rearrangement of
Tr

(
si·e

E
kBT

)
Z term in Equation 2.37. We

again refer to [50] for the details of this step.
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Figure 2.3: Net magnetization (|m|) of the self-consistency Equation 2.38. The
second-order phase transition can be observed at the critical tempera-
ture, Tc ≈ 2.269.

A major difference between the mean field approximation and the numerical ap-

proach using the Monte-Carlo method in Section 2.3 is the existence of residual mag-

netization (also known as the magnetic tail) for T > Tc. In Figure 2.3, |m| = 0 for

T > Tc, while the magnetization in Figure 2.1 does not drop to |m| = 0 immedi-

ately [61].
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CHAPTER THREE

RANDOM BOOLEAN NETWORKS

3.1 Introduction

In 1969, Stuart Kauffman introduced a model abstraction for gene regulatory net-

works (GRNs) known as Boolean networks [5, 62]. Over the years, Boolean networks

have proven to be a powerful tool for modeling complex dynamics of gene regulations

with little assumption. Using Boolean values to define gene activation and deac-

tivation, and Boolean functions to represent regulatory interactions between input

genes, we can generalize molecular mechanisms as a series of logic gates [63, 64, 65].

Modeling gene expression dynamics as a system of ordinary differential equations is

a common practice. However, it becomes computationally inefficient and often un-

feasible as the complexity of gene regulation increases; i.e., rise in the number of

kinetic parameters. Fortunately, for simple regulations such as activation or inhibi-

tion, the interaction rules can be modeled as a discrete-time step function or, more

conveniently, as Boolean dynamics. Diverse groups of biological systems have been

successfully modeled with Boolean networks since Kauffman’s introduction: notable

works include yeast transcriptional factors [66, 67] and yeast cell cycle [68], segment

polarity of Drosophila melanogaster [69], T-cell immune response [70], and various

cancers [71, 72, 73, 74]. The adoption of BN modeling extends to other fields, such

as supply chain networks in economics [75] and neural networks [76].
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In this chapter, we provide a brief overview of Boolean networks, a discussion

of the phase transition of Boolean dynamics, and the treatment of attractors as cell

types. Then, we review the control kernel (CK) as a new mode of control strategy

in Boolean dynamics. Finally, we provide a very brief description of probabilistic

Boolean networks.

3.2 Boolean Networks

Formally, a Boolean network has n genes, x = {x1, . . . , xn}, and each gene can

take on a binary state of “on” or “off” (xi ∈ {0, 1}). Let S = {1, ..., 2n} be the decimal

representation of the Boolean states indexed from 1 to N = 2n possible configurations

of the state space.

The states of these genes are “regulated” (or updated) by ki genes, the number

of input connections for the gene i, and the gene xi is updated by its corresponding

Boolean function fi. Boolean functions are also known as logical switching rules and

determine the state value from all possible combinations of ki genes. Let yi = {xj1 ,

xj2 , ..., xjki} be the set of regulating genes of xi. Then, the state transition of the

gene xi is given by

xi(t) = fi(yi(t− 1)), (3.1)

where fi : {0, 1}ki → {0, 1} in discrete time t ∈ {1, 2, ..., T }, and T is the simulation
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time. Then the Boolean dynamics describes the collective changes in the gene states

of a network over time. Here, we note that we only discuss synchronous updating of

the Boolean dynamics, where all the realizations occur at the same time. However,

asynchronous Boolean networks are also well studied, as they are often considered

closer to biological realism [77, 78, 79]. In random Boolean networks (RBNs), the

value of fi is assigned drawing from a probability distribution with bias of p for each

input, where it takes on 1 with probability p and 0, otherwise, for all combinations

of input genes xj1(t), xj2(t), ..., xjki (t). With a fixed k for each gene, an RBN has 22
k

possible update functions, and its truth table, a lookup table of the update functions

with all possible input gene values ({f1, . . . , fn}), is conveniently used to represent

the rules of gene regulations in full.

Figure 3.1 shows different representations for a 6-gene Boolean network with con-

nectivity of k = 2 and bias p = 0.5. Figure 3.1 (a), the wiring diagram, describes the

assignment of the input genes, Figure 3.1 (b), the truth table, contains all informa-

tion on the update rules, and Figure 3.1 (c) is the directed graph of all possible state

trajectories, where each state is the decimal encoding of x.
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Figure 3.1: A 6-gene network with k = 2, and the bias of p = 0.5. (a) Wiring
diagram of the network of the network. (b) Truth table of Boolean
functions. (c) State transition diagram. (d) Steady-state distribution,
g0(s) with perturbation q = 0.1.

3.3 RBN Dynamics: Ordered, Chaotic, Critical

Life forms have long been proposed to operate “at the edge of chaos” where the

complexity of a dynamical system must be robust enough to withstand unwanted

changes, but sufficiently flexible to adapt to external influence [6, 7, 8]. Torres-Sosa

et al. provide a useful classification of this dualism into two analogous trade-offs

in nature [9]. In the context of ontogenesis, there is a “developmental trade-off”
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where cells must be robust enough to withstand environmental perturbation in gene

expression patterns, but they must be flexible enough to adapt to environmental

fluctuations. In Darwinian evolution, an “evolutionary trade-off” occurs when funda-

mental phenotypic traits must be robust enough in the face of genetic mutations, but

some mutations are needed (and acquired) for new phenotypes to develop1. Torres-

Sosa et al. show that their analogies of balance in trade-offs and the role of dynamic

criticality also apply to preservation and expansion of Waddington’s (phenotpyic)

landscape [80]. We discuss attractor landscapes in greater detail in Section 3.4.

The balance in evolutionary properties has been a major source of motivation

in studies of RBNs, and in doing so, many have explored ways to quantify stability

of a network [10, 11]. The process typically begins with the question, “how much

change does a small perturbation incur in the overall system?” In the context of

Boolean networks, this corresponds to the impact that a bit-wise flip in gene state

has on the network dynamics. The Hamming distance can be used to measure the

number of bits needed to change from one string of binary values (x) to another (y)

for binary strings of equal length: H(x,y) = |x−y|. Then, through many numerical

simulations, one can compare the average normalized Hamming distances of m pairs

of randomly chosen gene states ((x,y) drawn from the state space, (S, S)) against

1Torres-Sosa et al. go on to show that dynamical criticality naturally emerges in Darwinian
selection as “a consequence of evolution that favors evolvability [9]
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the corresponding realizations of those states. The normalized Hamming distance of

two binary gene states (x,y) is:

H(t) =
1

m

m∑
(x,y)∈(S,S)

1

n

n∑
i

H(x(t),y(t)). (3.2)

The graph of H(t) versus H(t + 1) is the Derrida plot and describes the effect of

perturbation on the dynamical behaviors of Boolean networks [81]. Analysis of the

Derrida plots reveals an important relation between the two key parameters of the

RBNs (k and p):

kc = 1/[2p(1− p)], (3.3)

where kc is the critical number of connectivity for critical dynamics. Equation 3.3

can be generalized as

s = 2kp(1− p), (3.4)

where s is the average sensitivity of an RBN. Equation 3.4 describes the phase tran-

sition of ordered and chaotic regimes as a function k and p (Figure 3.2) [12]. When

s < 1, the propagation of the perturbation has little impact on the overall behavior

of the network, and its Derrida curve lies below the main diagonal of the Derrida plot
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(H(t) vs. H(t+1)). When s > 1, the perturbation is extensive and, thus, the Derrida

curve lies above the main diagonal of the Derrida plot, implying chaotic deviations.

Finally, when s = 1, the network is in the critical domain and its Derrida curve op-

erates near the main diagonal of the Derrida plot [77]. The network in Figure 3.1 is

an example of a network in the critical regime.

Others have taken different approaches to arrive at the same result in descriptions

of phase transitions of RBNs. An important work to mention is by Luque and Solé

whose use of Boolean derivatives and annealed approximation established an order

parameter: Lyapunov exponent, λ = log |2kp(1 − p)| [82]. When λ = 0, an RBN is

critical, when λ < 0, it is ordered, and when λ > 0, it is chaotic.

Experiments supporting the need for a critical phase transition in ontogenesis are

now extensive [6, 9, 70, 66, 83, 84]. For more detailed background information on

RBNs, the following excellent review articles are recommended: [77], [85], and [86].

3.4 Attractors as Cell Types

In most BN analyses, the ensemble approach is taken to extract robust features

of GRNs with little assumption. Ensemble theory is a conceptual framework for

statistical analysis of a collection of RBNs and allows the study of the influence of

(statistically significant) structural features of the network [1]. By studying ensembles

of Boolean networks, different characterizations of cell behavior can be established.

In particular, through the lens of attractors and steady-state distributions of Boolean
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Figure 3.2: Phase diagram of RBN regimes: s = 2kp(1 − p). Sensitivities s < 1,
s > 1, and s = 1 correspond to the ordered, chaotic, and critical regimes,
respectively.

states, many have defined cell types, and this has been a source of rich discussions [87].

First, we establish definitions. An attractor is a set of static or periodically stable

states of a cell. The basin of attraction is the set of states that leads to one attractor.

In the case of Boolean networks, since the state space and dynamics are deterministic,

the system necessarily enters the attractors with sufficient time. Significant effort has

been put into finding efficient ways to find attractors for a large network through

notable methods such as network reduction [78, 88]. The state transition diagram in
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Figure 3.1 (c) shows two attractors, since the directed graphs of the states are two

disjoint sets.

Kauffman first argued that dynamical attractors model cell types [1, 5, 62, 87].

This is a reasonable assumption, since no cell is defined by a single attribute, but

by some combination or morphology, ontogeny, its functional and/or molecular com-

position, all of which are characteristics of long-term (stable-state) behaviors of a

system [89]. While there is no unified clarity on how to define a cell type, many re-

cent findings support Kauffman’s thesis, and some even suggesting a more “dynamic”

definition [90]. Huang et al. broadly characterized three cellular states (proliferation,

differentiation, and apoptosis) as attractors [71, 91, 17]. In some ways, the cell state

(or the phenotype) is a more useful description of what a cell is actually, given its

long-term functional characteristics.

Huang et al. reasoned that stimuli on cells can lead to a reprogramming of a

cell. The fact that different cell states can lead to reprogramming from one state to

another suggests that there is a directional bias in cell-fate decisions [71, 91, 17, 92].

Here, the analogy to Waddington’s epignetic landscape is typically drawn, where a cell

differentiation process is described as a ball rolling down a series of valleys until one

is stuck at some lower points [80]. Therefore, the lowest points of valleys are akin to

attractors, signifying cell-fates or phenotypes. Thermodynamically this makes sense,

as the lower physical locations of a landscape indicate low potential energy, while
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higher locations (where Waddington’s theoretical ball begins its journey) correspond

to higher potential energy. At these high points, cells maintain the greatest potential

(pluripotency) to differentiate and have long been associated with stem cells. In

essence, cellular phenotypes are attractors in gene regulation [93]. Strong evidence

corroborates this thesis with experiments in the form of cancer, capillary endothelial

cells, and stem cells [71, 72, 94, 93, 95]. We note that since Boolean dynamics are

discrete, it adds to the difficulty of formulating the (quasi-) potential energy landscape

(U(x)) of attractors [96].

In the context of Boolean networks, the attractors are hypothesized to correspond

to cell types. However, we look at this view with caution as, for instance, the deter-

ministic nature of BNs can result in attractors that are highly sensitive to a small

change2. One convenient way to observe the attractors of networks with a reasonably

small number of genes is to numerically approximate the steady-state distribution

through long-term simulations [97, 98, 99, 100, 101]. Computing steady-state distri-

butions allows one to capture important information about a network, such as the

influence of genes. Here, influence is the measure of long-term impact of a gene on

others. We prefer this alternative definition of a cell type. Steady-state distributions

characterize cell types (with mild stability assumptions), as most of the steady-state

2This brings about a difficult argumentation on what are the necessary characteristics of attrac-
tors to constitute as cell types (i.e., the length of the attractor, size of the system, etc.).
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probability mass is concentrated in the attractors [99, 100]. We have previously de-

fined steady-state distributions corresponding to RBNs with perturbation as cell type

in our work [37] and adopt this for the rest of the work.

For an RBN, Monte Carlo simulations can be used to approximate the steady-

state probability distribution of gene states by introducing a random perturbation

into the network3 [97, 98, 99, 100, 101, 102]. This can be implemented by considering

a perturbation probability q for each time step and a random binary vector γ =

(γ1, γ2, ..., γn), where γi ∈ {0, 1} and P{γi = 1} = q, such that


x(t) = γ, with probability (1− (1− q)n)

x(t) = {f1(y1(t− 1)), f2(y2(t− 1)), ..., fn(yn(t− 1))}, otherwise.

(3.5)

With perturbation, there is a nonzero probability of arriving at any state, and thus

the RBN is an ergodic Markov chain where the states converge after a sufficient

time [97, 98]. The intrinsic noise is often present in biological systems due to the small

size and molecular nature of interactions. For example, in Escherichia coli, the noise of

gene expression modeled as stochastic dynamics has been well studied to be necessary

in its regulation, fluctuation of transcription rate, and cell division [103, 104, 105, 106].

3Steady-state probabilities are often discussed in the context of probabilistic Boolean networks
(PBNs). We refrain from the discussion of PBNs here, but leave with a reference [102].
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The network in Figure 3.1 has the steady-state distribution g0, after T = 104

simulation time, with a perturbation probability of q = 0.1. The attractor states can

be identified by the peaks in g0, where the state frequencies are the highest.
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CHAPTER FOUR

STOCHASTIC CONTROL KERNEL

4.1 Introduction

Controlling gene expression is a highly desirable action in many areas of molecular

biology. For example, targeted drug delivery or the knockdown effect in gene therapy

requires persistent external influence on a cell to achieve the desired gene expression.

In the context of RBNs, there are numerous different control strategies. Shmulevich

et al. initially proposed the optimal intervention strategy of probabilistic Boolean

networks by altering Boolean functions [97]. For this type of intervention, one is often

interested in finding the best candidate genes to intervene by minimizing the mean

first passage time. Serra et al. have used the notion of knock-out or silencing of genes

to analyze the effect of perturbations1 [107, 108, 109].

In recent work, direct modification of gene states to drive the dynamics to desired

attractors has been proposed [110]. We turn our focus to a specific notion of control,

pinning, also known as the “node state override,”, where the gene state is fixed for the

entire duration of the time evolution. Pinning differs from the original formulation

of intervention in that the Boolean functions are preserved for all genes except the

1The knock-out of a gene is here is not be confused with the knockdown. The knock-out refers
to the complete elimination of a gene, while knockdown is the reduction in gene expression.
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ones that are held static. Kim et al. formalized the control kernel of a network as

“the minimal set of genes whose pinning reshapes the dynamics so that the basin of

attraction becomes the entire configuration space [111].”

We show that by stochastically pinning the control kernel of a cell, we are able to

create a new cell type, defined as a mixture of pinned steady-state distributions.

4.2 Control Kernel

Let us define a CK set, z = {x1, x2, ..., xr}, where r ≤ n is the number of pinned

genes (that is, the cardinality of CK), and let Wr = {1, ..., 2r} be the corresponding

set of decimal encoding of the 2r states in CK. Without loss of generality, CK can be

arranged so that it is always the first r genes. We denote ordered sets of the pinned

values of CK as Zw, where w ∈ Wr. For example, Z1 = {x1 = 0, x2 = 0, ..., xr−1 =

0, xr = 0}, Z2 = {x1 = 0, x2 = 0, ..., xr−1 = 0, xr = 1}, etc... . Then, the dynamics of

a BN is as follows:


z(t) = Zw

x(t) = fi(yi(t− 1)), for i > r.

(4.1)

We reserve the index w = 0 to describe the unpinned dynamics, i.e., Z0 = {fl(yl(t−

1)}rl=1. In other words, when w = 0, Equation 4.1 is Equation 3.1. The pinning

procedure naturally produces 2r disjoint steady-state distributions, g
(r)
w (s), whose
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state spaces are equally partitioned by r. Here, we use the vector g
(r)
w to represent

an individual cell type (steady-state distribution) for the CK index r. Naturally, in a

pinned network, the number of “active” genes is reduced, as there is less dependency

on the wiring (connectivity) of its regulators.

Figure 4.1: (Left) Pinned BN with r = 1; x1 is either 0 or 1. The two result-

ing steady-state distributions g
(1)
1 (s) and g

(1)
2 (s) have partitioned state

spaces and preserve attractor points. (Right) Pinned BN with r = 2; x1
and x2 are pinned to either 0 or 1. The 4 resulting steady-state distri-
butions g

(2)
1 (s), g

(2)
2 (s), g

(2)
3 (s) and g

(2)
4 (s), once again, have partitioned

state spaces and preserve attractor points.

In Figure 4.1, we show the network (Figure 3.1) with the pin r = 1. By pinning

the CK to z1 or z2, we generate two steady-state distributions g
(1)
1 (s) and g

(1)
2 (s),
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respectively. The resulting steady-state distributions are partitioned distributions

that preserve features such as attractor states seen from the unpinned steady-state

distribution of the network, g0. Similarly, when more than one gene is pinned (i.e.,

r = 2), the structural preservation of the features of g0 can be observed, albeit smaller

in effect (i.e., smaller frequency in attractor state).

Figure 4.1 shows four disjoint steady-state distributions corresponding to combi-

nations of different pin values for x1 and x2: g
(2)
1 (s), g

(2)
2 (s), g

(2)
3 (s), and g

(2)
4 (s). An

important observation of note is that the scalar product of two distributions g
(r)
i (s)

and g
(r)
j (s) for i ̸= j,

∑
s∈S g

(r)
i (s)g

(r)
j (s) ≈ 0, for a small γ ̸= 0.

4.3 Stochastic Control Kernel

Let {ηt}t∈T , where ηt ∈ W ⊆ {{0},Wr}, be a multilevel telegraph process that

describes the transitions between the allowed states in CK. Here, we define stochastic

CK as z(t) = Zηt , for some r. Let g(s) be the new steady-state distribution as a

result of Zηt . Its distribution will be a mixture of all g
(r)
w ’s, i.e.,

g(s) = c0g0(s) +
∑

w∈Wr

c(r)w g(r)w (s), (4.2)

where c
(r)
w ’s are the scalar weights of the respective g

(r)
w ’s. Here, we can consider cw

as similarity weights between the new cell type, g, and g
(r)
w ’s.
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Figure 4.2: Stochastic pinning of the BN; (a) describes the transition diagram of
Q(1), (b) shows the first 100 sampled ηt’s of the stochastic process, and
(c) is the steady-state distribution of the stochastic CK, g(s), obtained
after T = 216 simulation steps.

To illustrate this point, we look at the following example with the BN dynamics

of the network from Figure 3.1. Consider a stochastic matrix, Q(t) = Qt(1), whose

entries are Qw,w0(t) = Pr(ηt = w, t|η0 = w0, t = 0) , where w,w0 ∈ W , and Q(1) is

the one-step transition probability matrix. If

Q(1) =

0.2 0.8

0.2 0.8

 , (4.3)

the CK is a two-state telegraph process for ηt ∈ {W1} = {1, 2}. Figure 4.2 (a)

depicts the transition diagram of Q(1). The given transition matrix results in higher

frequencies of ηt = 2 than ηt = 1 (Figure 4.2 (b) shows the first 100 sampled ηt’s). The

resulting steady-state distribution of the stochastic CK dynamics, g(s), is the linear

combination of g
(1)
1 (s) and g

(1)
2 (s) by Equation 4.2. Figure 4.2 (c) shows the steady-

state distribution of the stochastic dynamics of CK obtained after T = 216 time steps.
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It is easy to see that g(s) is “mostly” g
(1)
2 (s), which means the corresponding similarity

weight c2 > c1. Here, we interpret this as that the new cell type g(s) resulting from

stochastic pinning is a weighted mixture of cell types g
(1)
1 (s) and g

(1)
2 (s). This is true as

long as the transition rates are not “too fast.” In the next chapter, we take advantage

of the disjoint property of the gw’s to develop a spectral decomposition method that

provides these weights. Another method, non-negative matrix factorization (NNMF),

is discussed in the case when g
(1)
1 (s) and g

(1)
2 (s) are no longer disjoint, under different

CK rules.

This brings about an important discussion on what cell differentiation is in the

context of BNs. Bornholdt and Kauffman have previously stated that “if an attractor

is a cell type, then differentiation is [the] flow from one to another attractor induced by

noise or signal [87].” In Figure 4.2, we see a new cell type, g(s), has been induced by

the stochastic CK process. Certainly, this intervention by CK causes an overall shift

in the distribution, creating a transitory state from one cell type, g0(s), to another,

g(s), which in turn is closer to g
(1)
2 (s). It is not improbable to surmise that a certain

stochastic intervention, such as stochastic CK, captures the aforementioned “flow” in

cell differentiation. In the next chapter, we show that this transition emerges spon-

taneously in coupled RBNs that operate near the critical point of a phase transition.

This result, if true, supports the hypothesis that pluripotency in cell differentiation is

a collective behavior in stem cell populations due to cell-cell cooperativity and strong
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intrinsic fluctuations.
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CHAPTER FIVE

MULTILAYER ISING HAMILTONIAN FOR COUPLED BOOLEAN

NETWORKS

5.1 Introduction

While the significant majority of research on Boolean networks is focused on the

regulation and expression patterns of single cells, recent efforts have been made to

model multicellular systems. Serra et al. and Villani et al. have provided one of

the earliest frameworks for modeling a collection of interacting Boolean networks

akin to two-dimensional cellular automata, measuring average attractor periods with

different levels of intensities of interaction [108, 112]. Using their model as the ba-

sis, others have explored the emergent behaviors and properties of coupled Boolean

networks. Daminai et al. explored whether increased interaction between coupled

Boolean networks contributes to expanding (or reducing) the variety of behaviors

that are possible for a cell with a given genetic content [113]. Damiani et al. showed

that short-distance interactions among Boolean models of genetic regulatory networks

exhibit robust generic properties. Flann et al. measured information complexity

(Kolomogorov complexity) of a tissue of RBNs when coupled in symmetric and or-

thogonal directions of interactions and determined that the formation of patterns is

most information rich in the near-critical complexity domain [114]. We have previ-

ously modeled tissues of coupled Boolean networks with linear threshold functions,
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where long-term steady-state patterns (phenotypes) were observed in networks of crit-

ical dynamics [37]. Finally, in the most recent study by Kim et al., multilayer RBNs

were investigated, where isogenic GRN ware coupled according to a random selection

of topology in silico with activation rules from [114]. They showed that a multilayer

RBN structure facilitated the production of a measured complexity, antifragility, in

a system [115].

However, few have addressed the complex interplay of cell-cell cooperation and in-

trinsic noise required in the differentiation process of pluripotent cells. Cooperativity

and intrinsic noise in stem cells have been shown to play an essential role in various

behaviors, including motility, sorting, and most importantly differentiation to pheno-

typically heterogeneous populations of cell types [20, 21, 41]. We propose a coupled

BN model whose intercellular dynamics is governed by a multilayer Ising model of

interacting control kernels. The multilayer Ising model captures the cell-cell cooper-

ativity and intrinsic noise necessary for a population of isogenic cells to self-organize

to characteristically different cell types, defined by steady-state distributions1.

In this chapter, we establish the multilayer Ising Hamiltonian and its numerical

1We make a careful distinction from the previous work on guided self-organization by Carlos
Gershenson. In his work “Guiding the self-organization of random Boolean networks,” Gershenson
offers strategies to guide individual networks to attractors [116]. He summarizes a general guideline
for altering BN parameters (p and k), depending on the dynamic regime to which it belongs, in order
to steer the flow to desired attractors. Gershenson’s self-organization is focused on fine-tuning. In
Chapter 8, we show self-organization of stem cells without the aid of any tuning guidance.
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simulation method. In Chapter 6, we discuss methods for detecting cell types from the

coupled BN model, and in Chapter 7, we show that the multilayer Ising Hamiltonian

demonstrates a second-order phase transition in the heterogeneity of the cell type

population as a function of intercellular noise. Furthemore, we show that in the

presence of external stimuli, hysteresis effects can be observed, indicating that a

system of coupled BNs carry phenotypic memory.

5.2 Multilayer Ising Model

In multicellular systems, cellular interactions or signal transduction are autocrine

or paracrine. Many have modeled Boolean networks with dedicated receptor genes

reflecting this behavior [108, 117]. However, receptor genes can also be under the in-

fluence of some external field that contributes to the overall phenotypic outcome (i.e.,

drug delivery affecting a whole population). Furthermore, these effects on receptor

genes need not be static in their gene expression.

Inspired by the stochastic pinning procedure from Section 4.2, we propose a multi-

layer Ising Hamiltonian for a multicellular system for L = N×N coupled Boolean net-

works. The Hamiltonian captures (1) interactions among neighboring cells (paracrine

effect), (2) a cell’s tendency to follow its own dynamics as an independent BN (i.e.,

feed back condition), and (3) external and/or autocrine effect (i.e., drug delivery).

Each cell i is allowed to interact with a set of neighboring cells in Von Neumann

directions denoted by Γi. For each Boolean variable σ ∈ {0, 1}, define a linear trans-
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formation σ̄ = 2σ − 1 ∈ {−1, 1}. We assume that the BNs interact with each other

through their CK according to the multilayer Ising Hamiltonian:

Hr = −
r∑

m=1

L∑
i=1

[∑
j∈Γi

Jijx̄i,mx̄j,m + h0x̄i,mf̄i,m + hx̄i,mψ̄m

]
. (5.1)

Here, the CK size r determines the number of independent Ising layers employed. Jij

is the cell-cell interaction strength between the ith and jth CKs. h0 and h represent

strengths of local external fields, where they are a cell’s tendency to follow its original

cell’s dynamics (f̄i,m) and an external intervention (ψ̄m) respectively.

In this work, we only consider J > 0 and assume Jij = J = 1 for all CK inter-

actions for simplicity. We focus primarily on the multilayer Ising Hamiltonian with

r = 1 and r = 2, hereafter. The following summarizes the four possible cases of

interaction behaviors characterized by the Hamiltonian:

1. When h = 0 and h0 = 0, Equation 5.1 is the standard zero-field Ising model for

the CK that describes paracrine signaling.

2. When h0 ̸= 0 and h = 0, Equation 5.1 is the standard Ising model with an

external field. The external field could be a static or time-dependent.

3. When h0 = 0 and h ̸= 0, the cells interact with their Von Neumann neighbors

as well as favoring to behave as their original uncoupled cells. When h0 ≫ J ,

Equation 5.1 behaves as independent BN dynamics.
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4. When h ̸= 0 and h0 ̸= 0, Equation 5.1 combines all three signaling effects of

cases 1, 2 and 3.

Finally, the biological mechanism of a cell-cell communication or cell interaction

with external stimuli is facilitated by diffusing molecular signals. To capture this

stochastic process, we introduce an additional type of intrinsic noise in the system,

denoted as T , which acts at the population level. The analog of T in standard

statistical mechanics is the temperature of the system. Throughout this work, we

reference and use intrinsic noise interchangeably with temperature. Thus, h0, h, and

T serve as the main control parameters for the model intercellular dynamics.

5.3 Simulation Method

The simulation was set on a 50 × 50 lattice with periodic boundary conditions.

For each simulation run, RBNs with n = 6 genes with a fixed bias of p = 0.5 and

connectivity of k = 2. Each network has an internal noise of q = 0.1. Different values

of CKs (r = 1, 2) and external fields (h0, h) were considered in these experiments.

A total of 65 temperature points (T ) were sampled in the range of T ∈ [0.01, 4.0]

for the simulations. For each temperature point, d = 200 independent simulations

were repeated. Each simulation had a burn-in period of equilibration for up to time

teq = 104, and the magnetization data were collected after T = 104 MC steps. The

Metropolis Algorithm was used to simulate the multilayer Ising Hamiltonian (Ap-
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pendix A).

For each MC step, there is (1) a sweep of the lattice for the CKs, according to the

multilayer Ising Hamiltonian, followed by (2) updating of the gene states for all cells

according to their RBN dynamics. Let the time step of the RBN dynamics be tRBN =

a∆t, where a is the time scale factor relative to the Monte Carlo step. Clearly, in the

case where the time scale for the multilayer Ising Hamiltonian and the RBN dynamics

are equal, a = 1. However, the time-scales of the two dynamics can be different and

therefore, there may exist a time-scale separation in other forms of experiments.

Without loss of generality, we employ the following simulation algorithm:

1. Begin the simulation: t = 0.

2. Randomly choose a cell and propose a new state(s) for the CK. This proposal

state is accepted with probability min(1, exp(−∆E/T )), where ∆E is the energy

(multilayer Ising Hamiltonian) difference between the current and the proposed

state.

3. Repeat Step 2 for all other cells.

4. Update BN states for all cells according to their Boolean dynamics (Equa-

tion 4.1) for tRBN.

5. Update simulation time t = t+ 1 and repeat Steps 2 ∼ 4 until time t = T .
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Additionally, for each simulation run, CK-induced cell types g
(1)
1 and g

(1)
2 are

computed a priori at t = 0 for post-simulation comparison. Upon the completion

of a simulation, different cell type detection methods are utilized to measure the

instantaneous cell type composition (Chapter 6) from a quantified order parameter

(Chapter 7).
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CHAPTER SIX

DETECTING CELL TYPES

6.1 Introduction

In Section 4.3, we showed that dynamic CKs can “probe” a steady-state distribu-

tion of a cell type, resulting in a new transitory cell type as a mixture of distributions.

Let G(t) describe the instantaneous distribution of the gene states of all cells in a

population induced by r dynamically pinned CKs, by the multilayer Ising Hamilto-

nian from Equation 5.1. Then, we can approximate this mixture distribution as G̃(t),

a linear combination of the known cell types, the unpinned distribution g0 and the

disjoint CK-induced distributions g
(r)
w ’s:

G̃(t) = c0(t)g0 +
∑

w∈Wr

c(r)w (t)g(r)
w , (6.1)

where 0 ≤ c0 ≤ 1, 0 ≤ c
(r)
w ≤ 1 and c0 +

∑
w c

(r)
w = 1. We define the relative error of

the approximation as ϵ(t) = ||G(t)− G̃(t)||/N , where ||.|| is the Euclidean norm.

Ideally, we would like to identify G(t) with proportional contributions (c0 and

c
(r)
w ’s) from each of the cell type g0 and g

(r)
w ’s. Depending on the terms involved

in the model Equation 5.1, utilizing different detection techniques could prove to

be computationally and numerically advantageous. In this section, we discuss three

methods for classifying and detecting cell types from the mixture distribution G(t)
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for three different cases:

• h0 = 0.

• h0 ̸= 0.

• When the error in approximation is high: ϵ(t) ≫ 0.

6.2 Spectral Decomposition: h0 = 0

In the absence of the first local external field acting on the dynamic of the original

cell (h0) in Equation 5.1, the dynamics of the population is dictated by the network

of interacting CKs and the external intervention. Thus, all CKs are expected to be in

a state w ∈ Wr. In other words, c0, and G(t) can be only described by the only cell

types induced by CK, g
(r)
w ’s. This assumption significantly simplifies finding c

(r)
w ’s.

Taking advantage of the non-overlapping (disjoint) property of gw, we define a set of

orthonormalized vectors as ĝ
(r)
w = g

(r)
w /⟨g(r)

w ,g
(r)
w ⟩, where ⟨·, ·⟩ is the inner product.

Here, we can spectral decomposeG(t) as the linear combination of normalized vectors,

ĝ
(r)
w ’s:

G(t) =
∑

w∈Wr

c(r)w (t)ĝ(r)
w , (6.2)

where

c(r)w (t) = ⟨G(t) , ĝ(r)
w ⟩. (6.3)

In summary, Ĝ(t) is the normalized instantaneous distribution of the individual
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cells in the population, and in the case of h0 = 0, this distribution is characterized by

CK induced cell types ĝ
(r)
w ’s with c

(r)
w ’s, the corresponding weights. The conservation

property
∑

w∈Wr
c
(r)
w (t) = 1 allows us to interpret the coefficients as the density of

each cell type in the population.

We consider the special case of r = 1, and let N1 and N2 be the numbers of cells

corresponding to the two cell types g
(1)
1 and g

(1)
2 , respectively, such that N1+N2 = L

is the total cell population. Then, the density of each cell type population is given

by c
(1)
w ’s:

N1

L
= c

(1)
1 ,

N2

L
= c

(1)
2 . (6.4)

This allows us to quantify the relative difference of two cell-type populations at time

t:

Mt = c
(1)
2 (t)− c

(1)
1 (t). (6.5)

Clearly, Mt ∈ [−1, 1]. In other words, Mt is the measure of cell type heterogeneity

(composition of a population) at time t, where the scaled value Mt = −1 corresponds

to a homogeneous population of a single cell type (ĝ
(1)
1 ), and Mt = 1 to another (ĝ

(2)
1 ).

Furthermore, we can define the order parameter of Equation 5.1 as ⟨M⟩ = ⟨|Mt|⟩,

where ⟨.⟩ indicates the ensemble average. In this case, ⟨M⟩ belongs to the same
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universality class as the 2D Ising model. From now on, we will refer to Mt as the

instantaneous magnetization of coupled BNs.

6.3 Linear Optimization: h0 ̸= 0

With h0 ̸= 0 in Equation 5.1, the system has the tendency to follow the original

Boolean dynamic, and G(t) is no longer a strict linear combination of disjoint or-

thonormal vectors g
(r)
w ’s induced by the CK. First, we note that when h0 ≫ 1, the

external field dominates the multilayer Ising Hamiltonian which favors and results in

activities of uncoupled Boolean networks. Thus, we are only interested in a reasonable

range of values for h0 (that is, h0 ≈ 1).

In the case where G(t) receives reasonable contributions from the control kernel

set and h0, finding the coefficients c0 and c
(r)
w in Equation 6.1 is a linear optimization

problem with constraints:

min ∥G(t)− Ĝ(t)∥ (6.6)

s.t. 0 ≤ c0, c
(r)
w ≤ 1 (6.7)

c0 +
∑
w

c(r)w ≤ 1. (6.8)

In cell type detection where the linear optimization method was needed, standard

linear programming algorithms Interior-Point Algorithm and Sequential Quadratic
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Programming (SQP) [118, 119, 120] were employed as they proved to be sufficiently

fast and accurate for this work.

6.4 Non-Negative Matrix Factorization

For reasons such as a non-trivial Boolean network or strong influences of combi-

nations of control parameters in Equation 5.1, the linear optimization method from

Section 6.3 may return a poor approximation forG(t) with the cell types g0 and g
(r)
w ’s.

Under those circumstances, we require a different method for cell type detection. To

illustrate, we briefly discuss a machine learning based approach of non-negative ma-

trix factorization (NNMF) here, however, other various decomposition methods for

mixtures of distributions [121] could be applied.

NNMF is used to decompose a non-negative matrix GN×T into a product of two

non-negative matrices ΩN×K and EK×T , where K is the rank of the decomposition

to be determined. The matrix ΩN×K provides K different steady-state distributions,

which can also be interpreted as new types of cells. The corresponding time-dependent

density numbers are stored in EK×T .
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CHAPTER SEVEN

NUMERICAL RESULTS OF THE MULTILAYER ISING

HAMILTONIAN

7.1 Results and Discussions

We establish the ensemble average of absolute magnetizations over d simulations

as the order parameter for the model coupled BNs for the case of r = 1:

⟨M⟩ = 1

d

d∑
i=1

1

T

teq+T∑
t=teq+1

|Mt| . (7.1)

With r = 1, Mt = c
(1)
2 − c

(1)
2 . For the order parameter ⟨M⟩, we utilize the spectral

decomposition method from Chapter 6 to determine the tissue cell type composition,

measured as population proportions or fractions of cell types corresponding to g0 and

g
(r)
w ’s.

7.1.1 Second-order Phase Transition: r = 1, h0 = 0, h = 0

Following the simulation method from Section 5.3, numerical experiments were

carried out for tissue sizes of 16× 16, 25× 25, 50× 50. 6-gene independent isogenic

coupled BNs at 65 sample temperature points in the range of T ∈ [0.01, 4.0], with

h = 0, h = 0 for r = 1 were used. Boolean networks were constructed with parameters

p = 0.5 and k = 2, and the ensemble average of d = 200 independent simulations was
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taken for each temperature point T .

In the absence of external fields h0 and h, and r = 1, Equation 5.1 is in the same

universality class as the 2D Ising model; thus, with an equivalent order parameter

regardless of the Boolean network of choice. With the spectral decomposition of

steady-state distributions (we only have two choices of cell types g
(1)
1 and g

(1)
2 ), we

can see that the simulations have precisely the same characteristic behaviors of the

second-order phase transition in the Ising model from Chapter 2 (Figure 7.1).

Figure 7.1: Simulation results for 6-gene, 50 × 50 coupled BNs for 65 temperature
points for T ∈ [0.01, 4.0], with h = 0, h = 0, r = 1. The ensemble
averages of d = 200 independent simulations with BNs (p = 0.5 and
k = 2) were taken to find the order parameter ⟨M⟩. The behavior of
the order parameter ⟨M⟩ is exactly the same as the second-order phase
transition of the 2D Ising model regardless of the choice of BNs.
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Figure 7.2: The susceptibility χ and the Binder cumulant U4 were calculated for all
simulations. (a) shows the maximum sensitivity at the critical temper-
ature Tc, and (b) shows the intersection of Binder cumulants of three
different tissue sizes, (16 × 16, 25 × 25, 50 × 50), also indicating the
point of the critical temperature in the phase transition.

The susceptibility χ and the Binder cumulant1 U4 of different tissue sizes further

show the exact characteristic behaviors of the second-order phase transition (Fig-

ure 7.2). As expected, maximum susceptibility is achieved at the critical temperature

Tc in the standard Ising model (Figure 7.2 (a)). Another characteristic feature of the

second-order phase transition is the finite-size scaling of the order parameter. This

can be seen in Binder cumulants of various tissue sizes. Computed U4’s for 16× 16,

25 × 25, and 50 × 50 tissue sizes intersect at the critical temperature of the Ising

model: Tc ≈ 2.269 (Figure 7.2 (b)).

1The Binder cumulant of the standard Ising model with zero external field is U4 = 1− ⟨m4⟩
3⟨m2⟩2 .
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Figure 7.3: Example simulations of coupled BN simulations at fixed temperatures
of T = 1.8, 2.269, 2.8 with p = 0.5, k = 2, h0 = h = 0. First row: Mt

for the duration of the post-equilibration time of T = 104 MC steps.
The t-axis has the time unit of 102 MC steps. For T = 1.8 (a), Mt ≈ 1
for the duration of the simulation, there is a uniformity in the cell type
population (to cell type g

(1)
2 ). For T = 2.269 (b), there is a swing in

Mt, as the cell population fluctuates from one cell type (i.e., g
(1)
2 ) to

another (g
(1)
1 ). For T = 2.8 (c), Mt ≈ 0 as the internal energy of the

system is excited and disordered, and the cells are not fixed to either cell
type (g

(1)
1 or g

(1)
2 ). In other words, it corresponds to the “pluripotent

states” of stem cells. Second row: 50× 50 lattice snapshots of coupled
BN networks. Each cell state on the lattice (s ∈ S) is color coded
according to a green-to-red gradient scheme with corresponding values
from 0 to 26 − 1. Snapshots (d), (e), and (f) show the transition from
differentiated to pluripotent cell states.

To illustrate further, three simulations of tissue size 50× 50 at fixed low temper-

ature (T = 1.8), medium temperature (T = 2.269), and high temperature (T = 2.8)

are shown in Figure 7.3. Snapshots of the lattice were taken at t = teq + T /2, where
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the cell state s ∈ S was color coded according to a green-to-red gradient scheme

(Figure 7.3 second row). Visually, the snapshots of the three temperatures resemble

Ising spin configurations at different temperature domains (Figure 2.1): for T = 1.8,

the pattern of cell states is uniform, for T = 2.269, the pattern forms fractal-like

structures of spin islands, and for T = 2.8, the pattern is well mixed. The time

evolution of Mt for the three simulations are shown in the first row of Figure 7.3. For

T = 1.8, Mt remains consistent throughout the simulation, indicating that there is

no change in homogeneity in the population of cell types. For T = 2.269, there is

a swing in the range for Mt ∈ [−1, 1]. Here, as the temperature approaches Tc, the

system reaches a critical juncture, where the cell differentiation is undecided between

the two possible ground states. Thus, there are two different cell types at play, where

there is a swing in dominance from one cell type population to another. Finally, for

T = 2.8, Mt remains Mt ≈ 0, indicating a failure to identify one of the two specific

cell types. Here, the internal energy of this system is buffered to be “excited”, and

the cells are not fixed to either cell type (g
(1)
1 or g

(1)
2 ). In other words, for T > Tc,

there is a persistent heterogeneity in the population of cell types, and it could be

interpreted that ⟨M⟩ corresponds to the “pluripotent states” of stem cells.

For a statistical mechanics interpretation of this biologically motivated (and posed)

numerical result, recall Waddington’s epigenetic landscape from Section 3.3. Cells at

the peak of a valley are in the highest potential state in the differentiation process. As
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they move toward positions of lower states, cells end up in ground-state energy, even-

tually differentiating to specific phenotypes. ⟨M⟩ for T > Tc, precisely correspond

to the “pluripotent states” of stem cells, as they are in highly excited cellular states

induced by the system’s intrinsic noise. If the temperature is reduced, the pluripo-

tent state flows through a spontaneous transition (which has the signatures of the

second-order phase transition) and eventually arrives at a differentiated state. Thus,

the heterogeneity in the cell population describes a pluripotent state, which transi-

tions to a homogeneous population of cell types with proper buffering of the internal

noise. In this context, the disorder-order second-order phase transition in

condensed matter physics is equivalent to the pluripotent-differentiated

phase transition in the early stages of cell differentiation . Much of this re-

sult supports MacArthur et al.’s view; to quote, “it is useful to think of pluripotency

as a statistical property, similar to a macrostate in statistical physics. [22]”

7.1.2 First-order Phase Transition and Hysteresis: r = 1, h0 = 0, h ̸= 0

A new set of experiments was performed for coupled BNs under the influence of

an external field h ̸= 0. Simulations were carried out for 120 uniformly distributed

values of h ∈ [−1, 1] with three fixed temperatures: low temperature (T = 1.8),

medium temperature (T = 2.269), and high temperature (T = 2.8). For each value

of h, d = 40 simulations were repeated, where for each simulation run, a 6-gene RBN

in the critical regime (p = 0.5, k = 2) was used. d = 40 simulations were run for each
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h from h = −1 to h = 1 first in increasing order and repeated in reverse order. Here,

we define the ensemble average of the magnetization (without absolute value) as the

order parameter for the first-order phase transition:

⟨M⟩ = 1

d

d∑
i=1

1

T

teq+T∑
t=teq+1

Mt. (7.2)

⟨M⟩ is plotted as a function of h (Figure 7.4).

Figure 7.4 shows that at h = 0, there is a spontaneous phase transition induced

by the external field, where cells collectively switch from one cell type to another

(observed by the transition in ⟨M⟩ from −1 to 1). Furthermore, for T = 1.8 and

T = 2.269, there is a jump discontinuity, while, for T = 2.8, there is a continuous

transition. The jump discontinuities for T ≤ Tc are characteristic features of the

first-order phase transition.
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Figure 7.4: Simulation results for 6-gene, 50×50 coupled BNs in the critical regime
with p = 0.5 and k = 2. 120 uniformly distributed points were drawn
from the range h ∈ [−1, 1], with h = 0 and fixed temperatures of T =
1.8, 2.269, 2.8. The ensemble average of d = 40 independent simulations
was taken for each h for the critical RBNs to compute ⟨M⟩.

The same set of experiments was then carried out with no equilibration time and

much shorter simulation time of T = 100 MC steps. Once again, fixed temperature

points of T = 1.8, T = 2.269, and T = 2.8 were used for 120 uniformly distributed

values of h ∈ [−1, 1]. Simulations were run with increasing values of h = −1 to h = 1

first and then repeated in reverse order (decreasing values from h = 1 to h = −1).

⟨M⟩ is plotted as a function of h (Figure 7.5).
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Figure 7.5: The ensemble average of d = 40 independent simulations was taken for
each h with a much shorter simulation time of T = 100 MC steps. The
figure shows the delay in the first-order phase transition, characterized
by hysteresis loops. The delay in the magnetization switch can be seen
for all three fixed temperature simulations in both increasing and de-
creasing directions of h ∈ [−1, 1].

Figure 7.5 shows the delay in magnetization for the three fixed-temperature sim-

ulations in increasing and decreasing directions of h ∈ [−1, 1]. The change and delay

in magnetization, as a response to an external field, describes the toggle switch-like

behavior of hysteresis loops in magnetic materials in a B-H curve2. This is precisely

the behavior of the lagging 2D Ising model under external field. In the context of

2Magnetic flux vs. magnetic force curve.
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pluripotent tissue of cells, the existence of hysteresis could implicate phenotypic mem-

ory. In electric circuits, hysteresis loops are associated with magnetic retention (or

memory) in a magnetic field, and ferromagnets behave as lagging toggle switches.

Here, the analogy of hysteresis loops could be made as a phenotypic memory in cell

self-regulation [122, 14]. A possible avenue of application for this system is a drug

delivery process in a tissue of cells, where the pharmacokinetics could be modeled as

an external field in the multilayer Ising Hamiltonian. For instance, upon successful

exposure to a drug, it is plausible that there is a toggle switch-like change across

the tissue from undesirable cell states (cells requiring treatment) to desirable states

(healthy cells). Ideally, this cell treatment process should be difficult to reverse. This

robustness is a required feature of phenotypic memory at the tissue-level.

We can further understand these simpler cases of phase transitions with the Lan-

dau free energy equations provided in Appendix C. The first-order phase transition at

critical h = 0 is qualitatively similar to the breaking of the symmetry in the energy of

the quadratic expansion with a linear term in the Landau free energy. The hysteresis

loops in Figure 7.5 are qualitatively similar to the cusp bifurcation (Appendix C.0.2).

7.1.3 Spontaneous Cell Differentiation: r = 1, h0 ̸= 0, h = 0

We now consider Equation 5.1 with h0 ̸= 0 and zero external field (h = 0), and

consider the change in compositions of cell types. For the case of r = 1, we have

g0, g
(1)
1 , and g

(1)
2 possible cell types, where the corresponding composition fractions
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Figure 7.6: Spontaneous differentiation process for 50×50 tissues with r = 1. First
row: Spontaneous differentiation process as a function of h ∈ [0, 3] for
(a) T = 0.25, (b) T = 1, and (c) T = 1.25. Second row: Spontaneous
differentiation process as a function of T ∈ [0, 3] for (d) h0 = 0, (e)
h0 = 0.5, and (f) h0 = 1. Cyan arrows indicate approximate starting
points of spontaneous differentiation.

are c0 + c
(1)
1 + c

(1)
2 = 1. We have simulated the multilayer Ising Hamiltonian for 30

uniformly distributed temperature points for h0 ∈ [0.01, 3] in descending order with

fixed T values of T = 0.25, 1, 1.25 respectively (Figures 7.6 (a), (b), (c)). Similarly,

we simulated 30 uniformly distributed T ∈ [0.01, 3] in descending order with fixed h0

values of h0 = 0, 0.5, 1 respectively (Figures 7.6 (d), (e), (f)). For these simulations,

we case study the Boolean network in Figure 3.1, and apply the linear optimization

method from Section 6.3 to find c0, c
(1)
1 , and c

(1)
2 .

For the first three cases where the temperature is fixed to T = 0.25, 1, 1.25 (Fig-
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ures 7.6 (a), (b), (c)) and with a high initial value of h0 = 3, we expect and see that

the contribution of the original cell type g0 is dominant in Equation 5.1; thus c0 is

comparably high. Most of the cells in the tissue act as independent BNs. When h0 = 3

drops to h0 = 0.01, c0, c
(1)
1 , and c

(1)
2 pass through critical values, where the dominant

contribution of c0 begins to decrease and the three cell types are in play, and finally

the tissue reaches a spontaneous differentiation point, where only one of the two cell

types (g
(1)
1 and g

(1)
2 ) is chosen. This transition is an example of a symmetry-breaking

event in which a disordered state, say pluripotent stem cells, has spontaneously differ-

entiated into an ordered state of specialized cells. This disorder-order phase transition

further corroborates past findings and characterization of pluripotent (multipotent)

stem cells as a “balanced, undecided state” of multiple gene expression patterns [17].

Figures 7.6 (d), (e), and (f) show changes in cell type composition with respect to

temperature with fixed values of h0 = 0, 0.5, 1. The trivial case of h0 = 0 describes

the standard 2D Ising model seen in Section 7.1.1 (Figure 7.6 (d)). Only two cell

types g
(1)
1 and g

(1)
2 are in play as differentiated cell types. In the beginning of the

simulation with a high temperature of T = 3, there is an even distribution of cell

types, thus c
(1)
1 = c

(1)
2 = 0.5. We see that with different h0 values of h0 = 0.5 and

h0 = 1 (Figures 7.6 (e) and (f)), the initial cell type compositions vary. As the

temperature is reduced, the c0, c
(1)
1 , and c

(1)
2 go through critical transitions where

the three systems differentiate spontaneously. Cyan arrows are placed to indicate
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the approximate starting points of spontaneous differentiation for all simulations in

Figure 7.6.

We carefully note that in all these experiments, the system always differentiates

to g
(1)
2 . This decision is related to the structure of the original BN (Figure 3.1).

The steady-state distribution of the original cell type g0 is not perfectly balanced in

the state space, resulting in differentiation to g
(1)
2 as the system parameters change.

We expect that with a different BN construction, the system can expect to choose

alternate paths in cell type differentiation.

7.1.4 Spontaneous Cell Differentiation: r = 2, h0 ̸= 0, h = 0

We consider the case of r = 2, where there are potentially 5 cell types g0, g
(2)
1 ,

g
(2)
2 , g

(2)
3 , and g

(2)
4 , are in play, and the corresponding composition fractions are

c0 + c
(1)
1 + c

(1)
2 = 1. Again, we have simulated the multilayer Ising Hamiltonian for 30

uniformly distributed temperature points for h0 ∈ [0.01, 3] in descending order with

fixed T values of T = 0.25, 1, 1.25 respectively (Figures 7.7 (a), (b), (c)), and then

T ∈ [0.01, 3] in descending order with fixed h0 values of h0 = 0, 0.5, 1 respectively

(Figures 7.7 (d), (e), (f)). The same Boolean network in Figure 3.1, and the linear

optimization method from Section 6.3 was used to find composition fractions.

Here, we again see in Figures 7.7 (a), (b), and (c) that with a high initial value

of h0 = 3, c0 is dominant. The other four cell types (g
(2)
1 , g

(2)
2 , g

(2)
3 , and g

(2)
4 ) are

also present, however, they contribute little to the overall composition. As h0 = 3
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Figure 7.7: Spontaneous differentiation process for 50×50 tissues with r = 1. First
row: Spontaneous differentiation process as a function of h0 for (a)
T = 0.25, (b) T = 1, and (c) T = 1.25. Second row: Spontaneous
differentiation process as a function of T for (d) h0 = 0, (e) h0 =
0.5, and (f) h0 = 1. Cyan and orange arrows indicate approximate
starting points of the two spontaneous differentiations. Cyan is the
initial differentiation, and orange is the latter differentiation.

is reduced to h0 = 0.01, we witness two sets of symmetry-breaking events occurring

as g0 differentiates initially into two separate groups
{
g
(2)
1 ,g

(2)
2

}
and

{
g
(2)
3 ,g

(2)
4

}
,

followed by a terminal differentiation to one of the four CK-induced cell types.

Figures 7.7 (d), (e), and (f) show similar changes in cell type composition (with

respect to temperature) as Figures 7.6 (d), (e), and (f). With h0 = 0 and the high

temperature of T = 3, the tissue is in a pluripotent state with all four cell types equally

present. We see that with different h0 values of h0 = 0.5 and h0 = 1 (Figures 7.7

68



(e) and (f)), the initial cell type composition varies. As the temperature is reduced

to T = 0.01, c0 and c
(2)
w ’ go through two critical phase transitions where the systems

differentiate spontaneously in two symmetry-breaking sets. Cyan and orange arrows

mark the approximate starting points of the two spontaneous differentiation processes,

where cyan is the initial differentiation, and orange is the latter differentiation.

Figure 7.8: Example simulations of cell-to-cell variability in coupled BN simulations
for r = 2 with a fixed h0 = 0.5. First row: time evolution of cell
type compositions as fractions at three different temperatures of T =
3, 1.85, 1, respectively, for time teq = T = 104 MC steps. Only the
post-equilibration time evolutions are shown, where the t-axis has the
time unit of 102 MC steps. For the evolutions at T = 3 and T = 1,
the fractions of the cell types remain consistent. For T = 1.85, the
dominant fractions of cell types switch regularly between g

(2)
3 and g

(2)
4 .

Second row: snapshots of the three temperature points taken at time
t = 16× 103.

We can observe the cell-to-cell variability in the multilayer Ising Hamiltonian
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by examining the time evolution of cell type composition and tissue snapshots of

simulations at a specific time. Figure 7.8 shows three independent simulations with

r = 2, h0 = 0.5, and three different temperature points of T = 3, 1.85, 1. The first row

shows the time evolution of the cell type fractions for the 5 cell types. The second row

shows the snapshots of the three temperature points taken at time t = 16 × 103. In

Figure 7.8 (a), where T = 3, there is an even distribution of cell types and this remains

consistent throughout. The cell states, marked with a continuous color-scheme for the

designated cell type colors, show a strong mixture and co-existence of cell types at the

time of the snapshot (Figure 7.8 (d)). For T = 1.85, which according to Figure 7.7

(e) falls in the range between the first spontaneous differentiation and the second

spontaneous differentiation, regularly changes in the composition of the dominant cell

type between g
(2)
3 and g

(2)
4 (Figure 7.8 (b)). Furthermore, the snapshot indicates the

formation of fractal-like islands for the cell type g
(2)
3 . These signatures of the second-

order phase transition are consistent with the standard 2D Ising model. Figure 7.7

(e) shows that with T = 1, the tissue dynamics has passed the second spontaneous

differentiation, resulting in a consistently homogeneous cell type (Figure 7.8 (c)). The

snapshot further supports this homogeneity of cell types (Figure 7.8 (f)).
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CHAPTER EIGHT

SELF-TUNED CELL DIFFERENTIATION

8.1 Introduction

In the development of mouse embryonic stem cells (mESCs), cells behave collec-

tively and synchronously at the population level to transition from a pluripotent state

to differentiated [123, 124]. Kalmar et al. have argued that pluripotency in mESCs is

a state of dynamic heterogeneity of a population [34]. Through stochastic modeling of

the three main transcription factors involved in the regulation of pluripotent states of

embryonic cells (Sox2, Oct4, and Nanog) or, as described by them as transcripitional

noise, Kalmar et al. have corroborated the well-supported view that the foundation

of pluripotency lies in “the maintenance of a poise state for differentiation, a ground

state” [38]. It is clear that one of the primary purposes of transcriptional noise in

a regulatory network is to generate dynamic heterogeneities at the population level.

Furthermore, heterogeneity in cell populations forms the basis for pattern formation

in embryogenesis. Many others have expressed similar supporting evidence on the

importance of intrinsic noise in maintaining cell-type population heterogeneity in a

wide range of contexts [21, 122, 125].

Another characteristic feature of stem cells is their ability to maintain dual capac-

ity for self-renewal (maintenance) and differentiation at the population level through

a series of regulatory mechanisms and metabolic pathways [126, 127, 128]. An ex-
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ample of a self-tuning mechanism is the AKT-mTor nutrient sensing pathway in stem

cells. AKT, also known as Protein kinase B (PKB), and mTOR, which regulates

cell proliferation and apoptosis, play a crucial role in the regulation of stem cell

energy production by simultaneously suppressing certain processes (oxidative phos-

phorylation) and boosting others (such as glycolysis) [128]. This balance, which is

self-regulated, has been shown to be essential for the maintenance of stem cells in

various tissues, and it is self-tuned and coordinated at the population level.

Here, we develop a simple internal ODE feedback model that self-tunes one’s

pluripotent tissue to differentiated in response to its instantaneous population het-

erogeneity (Mt) and the intrinsic noise of the system (T ). We identify Okamoto et

al.’s observation of mESCs and their unimodal to a bimodal transition in the gene

expression levels of the Nanog and Oct4 states as a potential avenue of application

for the developed model.

8.2 Model Implementation

In Chapter 7, we showed that by manually tuning T and h0 through the critical

values, the system undergoes a series of symmetry-breaking events. In this section, we

demonstrate that cells can collectively self-tune through a critical state that allows

them to decide their fate. For simplicity, we study r = 1 only and neglect the

local fields in Equation 5.1. This limit is equivalent to the standard Ising model.

We recently showed that a mean-field approach of the Ising model with a negative
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feedback mechanism drives the system through a supercritical pitchfork bifurcation

that can be interpreted as a cell fate decision [129]. We apply this approach to

the full Ising Hamiltonian EquationEquation 5.1. Here, we utilize the instantaneous

magnetization

Mt = c
(1)
2 (t)− c

(1)
1 (t) (8.1)

to measure the heterogeneity of a tissue as a dynamical system. As discussed in

Chapter 7, a perfect mixture of g
(1)
1 and g

(1)
2 (Mt = 0) corresponds to the pluripotent

state of the cell described by Huang et al. [17]. Mt = −1 and Mt = 1 correspond to

homogeneous populations of cell types g
(1)
1 and g

(1)
2 , respectively.

We consider an internal mechanism that allows the heterogeneity of a population,

measured in terms of instantaneous magnetization of the tissue, Mt, to regulate the

intrinsic noise of the population (temperature T ):

dT

dt
= |Mt| − αT, (8.2)

where α is the relaxation coefficient. That is to say, Equation 8.2 captures the negative

feedback response between cell-cell cooperativity and its intrinsic gene expression

noise.

The model Hamiltonian for coupled Boolean networks (Equation 5.1) with h = 0
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Figure 8.1: Simulations of a 32×32 Ising model with a self-tuning feedback equation
(Equation 8.2). Here, h = 0, h0 = 0, and α = 0.8. (a) Magnetization
trajectories show two systems are driven to Mt ≈ 0 immediately upon
initialization and eventually self-tunes to two different homogeneous cell
types (Mt ≈ −1 orMt ≈ 1). (b) The simulations show that the temper-
ature drop slows as it descends below the critical temperature (Tc) and
eventually reaches a steady temperature. Combining (a) and (b), we
see that as the feedback temperature reaches the Ising critical temper-
ature (Tc), the magnetizations begin to diverge and tissue differentiates
homogeneously to one of the two possible cell types. The time unit is
102 MC steps with NMC = 10.

and h0 = 0, combined with the internal temperature-magnetization feedback mech-

anism (Equation 8.2) was simulated on tissues of size 32 × 32. The system was set

to evolve for up to t = 8× 105 MC steps where NMC = 10. Equation 8.2 was solved

using the Euler method with a step size of ∆τ = 5×10−7, and the parameters α = 0.8

were fixed. The model Boolean network from Figure 3.1 was instantiated for all cells

with internal noise of q = 0.02.

The simulation of the model begins with random gene states for all cells in the

tissue, except the CK node, which, without loss of generality, is set: xc = {1}. We
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choose a high starting temperature of T = 2.8 for the system because it generates a

natural state of hypothesized heterogeneity in pluripotent cells in the early stage of the

embryonic stem cell cycle. Through negative feedback on instantaneous magnetiza-

tion, Equation 8.2 then self-tunes the system towards the critical and then sub-critical

temperatures, where symmetry breaking triggers spontaneous differentiation.

Figure 8.1 (a) shows the time evolution of magnetization (Mt) for two independent

simulations. Here, it can be seen that both simulations begin with Mt = 1, which

quickly approaches 0 over time. As the system evolves, the simulations decide and

bifurcate in their magnetization paths (Mt ≈ 1 andMt ≈ −1), resulting in differentia-

tion of population cell types (which correspond to g
(1)
1 and g

(1)
2 ). Figure 8.1 (b) shows

the time evolution of the temperature trajectories of the two simulations. Here, the

trajectories begin at T = 2.8, and with sufficient time, the temperature drops below

the critical temperature and eventually reaches an equilibrium sub-critical tempera-

ture. Combined, we see that as the temperature reaches the Ising critical temperature

(Tc), the tissue magnetizations diverge with an equal chance of the system choosing

one of the two cell types.

8.3 Unimodal to Bimodal Transition in Cell States

Observing tissue-level statistics provides additional insight into collective behav-

iors in pluripotent cells transitioning to two possible cell types. One hundred indepen-

dent and identical tissue simulations of Figure 8.1 were carried out and instantaneous
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state distributions G(t) and the mean gene state was collected at each time step. At

the beginning of the simulation, t = 1, the system was initialized with a high temper-

ature point (T = 2.8) and with the CK fixed to xc = {1} as in Figure 8.1. Trivially,

all cell states are in g
(1)
2 , and the average gene state, which describes the tissue-level

distribution, is unimodal (Figure 8.2 (a)). At time t = 1 × 105 where the system

reaches Mt ≈ 0, two different cell types are probed, resulting in a mixture of g
(1)
1 and

g
(1)
2 cell types, while the average state at the colony level remains unimodal, centered

between g
(1)
1 and g

(1)
2 (Figure 8.2 (b)). With time, the temperature self-tunes and

reaches an equilibrium point below the critical temperature (Tc). At time t = 6×105,

approximately half of the tissues form a homogeneous cell type of g
(1)
1 , and the other

half form a cell type g
(1)
2 . The tissue-level states reach a split bimodal distribution

(Figure 8.2 (c)). The system describes a full transition from a population of pluripo-

tent tissue to two differentiated cell types. At the tissue level, this unimodal-bimodal

transition at the critical junction of the phase transition occurs in several areas from

mouse embryogenesis [20] to the development of the cancer cell line [21].

As an application, self-tuned differentiation can replicate Okamoto et al.’s exper-

imental work on collective differentiation of mouse embryonic stem cells (mESCs)

under strict conditions [20]. Okamoto et al. have observed the gene expression levels

of key transcription factors in mESC, Nanog, and Oct4, in the early stage of differen-

tiation. According to the immunofluorescence markers of Venus and mKate2, which
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Figure 8.2: One hundred independent tissue simulations of a 32 × 32 Ising Hamil-
tonian (Equation 5.1) with the temperature-magnetization feedback
mechanism (Equation 8.2) are shown: (a) At time t = 1, where the

initial temperature is high (T = 2.8), all cells are of cell type g
(1)
2 . (b)

At time t = 1 × 105, where the tissues are Mt ≈ 0, there is a mixture
of g

(1)
1 and g

(1)
2 cell types from Figure 4.1 (left), and the average cell

state at the colony-level remains unimodal, centered between the distri-
butions g

(1)
1 (s) and g

(1)
2 (s). (c) At time t = 6 × 105, the tissues decide

on the fate of the cells with a drop in temperature to critical and sub-
critical points, and hence, Mt ≈ −1 or Mt ≈ 1. This results in a split,
bimodal distributions of gene states at the cellular and colony-level.
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report Nanog and Oct4 gene expressions, respectively, colonies of mESCs exposed to

leukemia inhibitory factor (LIF) demonstrated a high intensity of fluorescence, thus

exhibiting single-state behavior in Nanog and Oct4. Here, LIF acts to enhance Nanog

heterogeneity, in other words, to maintain the pluripotent state in the stem cell pop-

ulation. However, in the absence of LIF, high and low levels of Venus and mKate2

fluorescence were observed in cells, and cells are free to transition from pluripotent to

differentiated state. What was observed was a multilevel unimodal-bimodal transition

in the heterogeneity of gene expression levels at the single-cell level, followed by a

delayed transition at the colony level.

In this work, Okamoto et al. investigated the role of noise in the multilevel

transition from a unimodal to a bimodal distribution of mESC gene expression and

classified two main sources of behaviors: stochastic intrinsic fluctuation of cell state

in a cell (intrinsic noise) and deterministic extrinsic regulation with a network of

neighboring cells (cell-cell cooperativity) [20]. Of the two sources, Okamoto et al.

concluded that dynamic change in cell-cell cooperativity (in the case of the experiment,

the collective behavioral effect of LIF on the gene expressions of mESCs) is necessary

to observe this transition.

The cellular and colony-level unimodal-bimodal transition in the mESC distri-

butions of pluripotent population [25, 38, 39] is characterized by the multilayer Ising

Hamiltonian (Equation 5.1) with the temperature-magnetization feedback mechanism
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(Equation 8.2) when pluripotent cells and differentiated cells are assumed to be com-

plementary in gene states (i.e., they are induced by a fixed CK of r = 1). Then,

pluripotent and differentiated cell types form g
(1)
1 and g

(1)
2 , which exhibit multilevel

unimodal-bimodal transitions of cell states with the self-tuning mechanism, as seen

in Figure 8.2.
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CHAPTER NINE

DISCUSSION AND CONCLUSION

In this work, we began by establishing the background knowledge necessary to

develop the intercellular rules that govern the coupled BNs. Specifically, we have

provided a surface review of the Ising model and random Boolean networks, and we

have defined cell types as long-term steady-state behaviors of BNs. We introduced

an intervention strategy known as the stochastic control kernel. Finally, we estab-

lished the model paradigm for coupled BNs, where the interactions of the cells are

governed by the multilayer Ising Hamiltonian, which captures three different effects

of paracrine signaling, isolated independent BN dynamics, and autocrine signaling

and/or external interventions. We have explored different modes of cell type detec-

tion method, which, depending on the model Hamiltonian, prove to be numerically

accurate (and efficient) in practice. We showed through model simulations of coupled

BNs with multilayer Ising Hamiltonian that (1) cell populations can undergo char-

acteristic second-order phase transitions in the composition of the cell types under

different levels of cooperativity and intrinsic noise. Furthermore, (2) in the pres-

ence of external stimuli, cells demonstrate phenotypic memory. These characteristic

behaviors of coupled RBNs show that disorder-order, second-order phase transition

in condensed matter physics is equivalent to the symmetry-breaking events involved

in pluripotent-differentiated phase transition in the early stages of stem cell differ-
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entiation. Through numerical simulations, we showed that tissues of coupled BNs

undergo a series of symmetry-breaking events that alter the dynamics of the original

cell, resulting in spontaneous differentiation to various cell types with critical control

parameters of values T and h0. Finally, we have implemented a negative feedback

response between cell type composition and intrinsic noise in the population, which

self-tunes a population of pluripotent cells to differentiated cell types and captures

the qualitative unimodal-bimodal transition in cell state distributions, as observed

experimentally by Okamoto et al. under strict conditions.

The coupled BN model with multilayer Ising Hamiltonian and the methods of

simulation and detection in this work have many avenues for improvement and ex-

ploration. For instance, while each signaling term in Equation 5.1 was discussed in

detail and numerically simulated for selected parameter values, a model experiment

with full ranges of effects of h0, and h was not assessed. Computing the full spec-

trum of parameter values would provide a complete characterization of spontaneous

symmetry-breaking events in cell type differentiation.

Additionally, we note that the analysis in spontaneous phenotypic differentiation

(Sections 7.1.3 and 7.1.3) depends greatly on the use of the model construction of a

BN. The 6-gene BN exemplified throughout this work (Figure 3.1) is a conveniently

critical network that exhibits “near symmetric” steady-state distributions in state

space due to equal attractor sizes. We surmise that with more complex and sizable
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gene regulatory networks, the cell type detection methods discussed may prove inade-

quate, since the number of different types of cells that each BN can generate strongly

depends on the complexity of the cell-cell interaction and the structure of the original

BN. Consequently, it may prove more challenging to observe spontaneous differenti-

ation in ordered and chaotic networks using cell type detection methods such as the

linear optimization approach, as these methods are sensitive to the sizes of attractors.

In the self-tuning model of the multilayer Ising Hamiltonian, we have illustrated

a cellular and population-level transition in cell states or differentiation, and Okamto

et al.’s experimental served as a model application under strict conditions. It is

worth pointing out that the general model assumption in Okamoto et al.’s work is

that cells transition between two attractor states (pluripotent and differentiated) of

a double-well potential landscape. The potential barrier (whether it is skewed in

one direction or symmetric) is lowered in the absence of the stimuli, LIF+. This

is a contrasting interpretation of the life cycle of a cell depicted in Waddington’s

epigenetic landscape. The multilayer Ising Hamiltonian shows a differentiation from

one state (pluripotent) to two distinct cell types (differentiated) that more closely

reflects Waddington’s epigenetic landscape and Huang et al.’s multipotent stem cell

interpretation as a “balanced, undecided state” of multiple gene expression patterns

[17]. This difference in interpretation of the potential landscape results in a less than

one-to-one match with the model experiment.
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Plans are in development to improve the model Hamiltonian and associated method

tools and address the interpretive issues mentioned in the aforementioned article on

experimental results in the future. We believe that further studies in the critical

dynamics, phase transitions, and symmetry breaking of coupled BNs will provide an

improved model closer to the biological realism of a stem cell cycle [129].
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APPENDIX A

METROPOLIS ALGORITHM

Here, we provide a basic schematics for the Metropolis Algorithm.

1. Choose an arbitrary site i, whose spin is si.

2. Flip the spin to get the candidate proposal: s′i.

3. Determine the change in the new local energy ∆E.

4. Accept/Reject proposal:

(a) If ∆E < 0, accept the proposal.

(b) Otherwise, accept the proposal according to the Boltzmann distribution:

i. p ∼ e
−∆E

T

5. Repeat steps 1 ∼ 4 for each Monte Carlo step.
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APPENDIX B

CANONICAL ENSEMBLE, BOLTZMANN DISTRIBUTION, AND

THE PARTITION FUNCTION

In statistical mechanics, there are three major thermodynamic ensembles describ-

ing particle microstates (s): the canonical ensemble, microcanonical ensemble, and

grand canonical ensemble. Each ensemble has fixed macroscopic conditions in com-

binations of the number of particles (N), volume (V ), energy (E), chemical potential

(µ) or temperature (T ).

In the canonical ensemble, the macroscopic conditions N , V , and T are kept fixed.

Thus, the thermodynamic potential of the system, F , (Helmholtz free energy) is given

by F (T, V,N) = E − TS, where E is the internal energy of the system, and S is the

Gibbs entropy. In the canonical ensemble, the probability (Ps) to find the system

in a microstate (s) with energy (E(s)) can be expressed in terms of the Boltzmann

distribution:

Ps =
e
−E(s)

kBT∑
s e

−E(s)
kBT

. (B.1)

Then, statistical ensemble P is the density matrix (we refer to [50] for the details of
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this step):

P = e
(F−E)
kBT . (B.2)

The Helmholtz free energy is determined by the probability normalization condition

that the density matrix has a trace of one, P = 1:

⇒ P =
e

(F )
kBT

e
(E)
kBT

(B.3)

⇒ 1

e
(F )
kBT

P =
1

e
(E)
kBT

(B.4)

⇒ exp

(
−F
kBT

)
= Tr

(
exp

(
−E
kBT

))
. (B.5)

Here, the right-hand side of equation (B.5) is the canonical partition function Z:

Z = Tr

(
exp

(
−E
kBT

))
. (B.6)

The outcome of Equation B.6 is that the Helmholtz free energy equation can be

expressed in terms of the partition function,

F = −kBT lnZ. (B.7)

In the case of the Ising model, the thermodynamics is described by the canonical
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ensemble. Then, from Equation B.5, the average spin of the states, ⟨si⟩, can be

written as a function of the partition function

⟨si⟩ =
Tr
(
si · e

E
kBT

)
Z

, (B.8)

where E is now the Hamiltonian of the Ising model (Equation 2.3). This is known

as the Matsubara formalism in thermal quantum field theory (or statistical field the-

ory) [130].
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APPENDIX C

LANDAU FREE ENERGY

In Section 2.4, we saw the mean field treatment of the zero-field two-dimensional

Ising model shows the second-order phase transition at the critical temperature. It

turns out the dynamical behavior of T → Tc qualitatively equates to supercritical

pitchfork bifurcation [131, 50].

We wish to establish the similarities and differences between bifurcation and phase

transition, as they become a recurring theme in this section. It is often useful to

understand the stability of a dynamical system in terms of its free energy or potential

function V (x). The behaviors of dynamical systems are usually characterized by

their equilibrium states (fixed points), which correspond to the extrema of V (x).

When equilibrium states of a dynamical system can be created or destroyed (or such

that, when the stabilities of the system change) by a “smooth” change in the system

parameter, bifurcation points arise [131]. In dynamical systems, bifurcation occurs

in a finite-dimensional state space, and the asymptotic behavior of time, t → ∞, is

required for the states of a system to reach its equilibrium (or attractor).

Rajapakse and Smale provide a fascinating example of an observable bifurcation in

morphogenesis in their recent work [132, 133]. They postulate that the emergence of

a new cell type from its progenitor, that is, through natural means of differentiation,

reprogramming, or cancer, is the result of pitchfork bifurcation. Rajapakse and Smale
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justify that symmetric and asymmetric divisions (either in the same lineage or in

different cell types) to daughter cells are reflected by pitchfork bifurcation, as the cell

requires a “departure” from a fixed-point stable equilibrium to undergo cell division

of new (multiple) fixed points, the defining characteristic of pitchfork bifurcation

[132, 133].

On the other hand, the macroscopic state of a thermodynamic system corresponds

to the global minimum (ground state) of V (x). When the ground state shifts from

one state to another due to a change in the macroscopic variable (i.e., temperature,

pressure, and magnetic field), there is a phase transition [134]. In thermodynamic

systems, the limiting behaviors with respect to time (t) and and the size of the

system (N) are assumed: t→ ∞ and N → ∞ [131, 135].

Finally, we introduce the Landau Theory of Phase Transition. The Landau Theory

of Phase Transition is a tool to describe a phase transition as a continuous free energy

form with a Taylor expansion about an order parameter [136]. It is a phenomeno-

logical, expression of free energy, F , where we are concerned with the “lowering of

the symmetry” in F [137]. It does not care for the microscopic behavior of a sys-

tem, such as the dipole moment of a spin. This requires two assumptions. That

(1), F is analytic (differentiable everywhere), and (2) it obeys the symmetry of the
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Hamiltonian1 [138].

We expand these assumptions for the Landau theory of phase transition to the

following:

1. For the macroscopic variable T , the order parameter m is assumed to be small

at points of the critical phenomenon (Tc).

2. The free energy of a system can be approximated by the low-order expansion

in the powers of the order parameter m:

F (m) ≈ F0 + F1(m) + F2m
2 + F3m

3 + ... (C.1)

3. The coefficients Fi depend on the critical junctures of the macroscopic variables

T and h (if present), where h is the strength of the external field. This means

that we consider Fi = f ((T − Tc), (h− hc)), and hc is the critical point of the

external field.

In the following sections, we discuss two simple cases of Landau free energy: (1)

the quadratic expansion and (2) the quadratic expansion with a linear term. In

these analyses, we see that equilibrium solutions to Landau expansions correspond to

1The language for these two assumptions are borrowed from Fundamentals of Magnetism by
Mario Reis [138].
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bifurcation points.

C.0.1 Quadratic Expansion of Landau Free Energy

Under systems where the order parameter is bound by the parity symmetry, such

as a ferromagnetic system, the parity inversion is invariant: m 7→ −m. In this

chapter, we assume parity symmetry in all of the systems considered. This allows a

simplification of Equation C.1 to a Taylor expansion of even-powered terms of m’s

only. Without the presence of any external field (h = 0), the simplest example of

such free energy F is the quadratic expansion:

F (m) = F2m
2 + F4m

4. (C.2)

Our goal is to derive the magnetization dynamics,

ṁ = f(r,m), (C.3)

from Equation C.2, which we can nondimensionalize. We wish to obtain the free

energy form of the dynamical system that is a function of dimensionless parameters

r and M , with respect to some τ = f(t):

dM

dτ
= f(r,M). (C.4)
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By Assumption 3, Fi’ s depend on the critical junctures of the macroscopic variables:

(T − Tc) and (h − hc) = 0. Then, let F2 = a
2
(T − Tc) and F4 = 1

4
b in Equation C.2,

for some constants a, b > 0. By substituting F2 and F4,

F (m) =
a

2
(T − Tc)m

2 +
b

4
m4 (C.5)

= −A
2

(
1− T

Tc

)
m2 +

b

4
m4, (C.6)

where A = aTc. We take the first derivative with respect to m from Equation C.6 to

find the magnetization dynamics.

ṁ = −r dF
dm

= −r
(
−A

(
1− T

Tc

)
m+ bm3

)
(C.7)

= rA

(
1− T

Tc

)
m− rbm3. (C.8)

We apply a change of variables to τ = (rA)t and let M = m√
A/b

and r = (1− T/Tc).

Then r is the scaled measure of how far the system is from the critical temperature Tc.

We note that nondimensionalization of the Landau expansion allows us to analyze

systems only in terms of two parameters (M and r) without loss of information.

Now, the magnetization dynamic (Equation C.8) can be nondimensionalized with
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dimensionless parameters M , r, and τ :

dM

dτ
= rM −M3. (C.9)

Equation C.9 is a dimensionless vector field, and from it we can easily obtain quadratic

Landau free energy expansion of Equation C.9 (the potential function):

F (M) = −
∫
f(M) dM = F0 −

1

2
rM2 +

1

4
M4. (C.10)

For simplicity, let us assume F0 = 0.

Equilibrium Points and Bifurcation Diagram

A quick inspection of Equation C.9 tells us that the dynamical system is an

example of supercritical pitchfork bifurcation. Equilibrium solutions can be easily

solved:

0 = rM∗ − (M∗)3 (C.11)

⇒ 0 =M∗(r − (M∗)2) (C.12)

⇒ 0 =M∗(
√
r −M∗)(

√
r +M∗). (C.13)
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M∗ = 0 for ∀r ∈ R and M∗ = ±
√
r for r > 0. We are interested in the stabilities at

the equilibrium points

f ′(M∗) = r − 3(M∗)2. (C.14)

AtM∗ = 0 and r < 0, f ′(M∗) is stable. AtM∗ = 0 and r > 0, f ′(M∗) is unstable. At

M∗ = ±
√
r and r > 0, f ′(M∗) is stable. We have a supercritical pitchfork bifurcation

at M = 0, r = 0.

Figure C.1: Bifurcation diagram of the quadratic Landau free energy expansion: M
vs. r. Supercritical pitchfork bifurcation occurs at r = 0,M = 0.
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Figure C.2: Stability analysis for m from the self-consistency equation (Equa-
tion 2.38) near the critical temperature Tc. With k = q/(kBT ), stabili-
ties of m at varying value of k = 0.8, 1.0, 1.5 are shown in (a), (b), and
(c). (d) shows that the second-order phase transition at Tc is qualita-
tively similar to supercritical pitchfork bifurcation in Figure C.1.

For the zero-field 2-D Ising model, the phase transition at Tc is qualitatively similar

to the supercritical pitchfork bifurcation in Figure C.1. Recall the self-consistency
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equation (Equation 2.38). Let k = q/(kBT ). The stability analysis can be performed

for m = tanh(km) near the critical temperature T → Tc (Figure C.2).

Ground States and Phase Transition

Ground states are the global minima of free energy. We plot Equation C.10 to

find the ground states of the system. Figure C.3 plots the quadratic expansion with

three different values of r = −1, 0, 1. The ground states are M∗ = 0 for ∀r ≤ 0 and

M∗ = ±
√
r for r > 0.

Figure C.3: Plot of the quadratic Landau free energy expansion with values of r =
−1, 0, 1: F (M) vs. M . Second-order phase transition occurs atM = 0,
as with r < 0, there is a continuous change in ground state(s).

It is easy to see graphically in Figure C.3 that Equation C.10 exhibits a second-

order phase transition. Recall that we characterize the second-order phase transition
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by differentiability near the critical point, where there is a sudden shift in the ground

state(s). When r → 0+, there is a singular ground state at M∗ = 0. There is a

continuous change in M until the critical point of r = 0, where the ground state is

no longer at M∗ = 0, but has shifted to two possible states of M∗ = ±
√
r. Interest-

ingly, for quadratic expansion, the second-order phase transition is described by the

bifurcation diagram itself (Figure C.1).

C.0.2 Quadratic Expansion of Landau Free Energy with a Linear Term

We can perturb a system with an external field h that couples linearly with the

order parameter. An example of such a linear coupling is the classical dipole moment,

where the energy shift in the coupling due to the applied field is given by the linear

term |h|M [139]. Consider the quadratic expansion of Landau free energy from the

previous section, now with the inclusion of the external field (or the linear term):

F (M) = |h|M − 1

2
(r)M2 +

1

4
M4 (C.15)

Its magnetization dynamic is

dM

dτ
= |h|+ rM −M3. (C.16)
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Equilibrium Points and Bifurcation Diagram

We wish to find the equilibrium points (M∗, hc), where hc is the critical point of

h. We take the first derivative of Equation C.16 and find the equilibrium values of

M∗:

0 = r − 3(M∗)2 (C.17)

⇒M∗ =

√
r

3
. (C.18)

We use M∗ to Equation C.16 to find the set of values of hc that describe the three-

dimensional surface regions of the equilibrium points (M∗, r, h):

0 = |hc|+ rM∗ − (M∗)3 (C.19)

⇒ hc = ±

(
r

√
r

3
−
√
r

3

3
)

(C.20)

⇒ hc = ±2r

3

√
r

3
(C.21)

Here, we have identified two sets of equilibrium points for M and h. For r > 0,

hc = ±2r
3

√
r
3
divide the parameter space into two regions. In the region bounded by

functions hc = ±2r
3

√
r
3
and r > 0, the parameter space has three fixed points. For

the other region, the system has only one fixed point. Finally, when h = 0 and r = 0,

M = 0, there is a triple root, which is the cusp. Figure C.4 visualizes the parameter
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space of the equilibrium points as M vs. h. The discriminant2 (∆) of Equation C.19

can also tell us regions of the three-dimensional parameter space, where there are

different numbers of fixed points (M∗, r, hc).

Figure C.4: For the quadratic Landau free energy expansion with a linear term,
the parameter space of equilibrium points is bounded by hc = ±2r

3

√
r
3

(purple lines). Within this bounded region (hc), the system demon-
strates three equilibrium points. Outside of the region has just one
equilibrium point.

The bifurcation points of Equation C.16 are a three-dimensional surface as a

function of h and r (Figure C.5). The bifurcation analysis ofM vs. r shows that when

h > 0, there is a saddle-node bifurcation. When h = 0, there is a pitchfork bifurcation.

When h < 0, there is again a saddle-node bifurcation. When different bifurcations

2Cubic equations of the form x3 + px+ q = 0 have the discriminant, ∆ = −4p3 − 27q2.
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come together as such, there is a “fold” in the bifurcation curve. This “bifurcation of

bifurcations” is called cusp catastrophe, and they occur at the spontaneous moment

of geometric “fold” in the parameter space and the order parameter.

Figure C.5: Bifurcation diagram of the quadratic expansion of free energy with
a linear term is a three-dimensional surface: M vs. h vs. r. Cusp
catastrophe is observed at the imperfect bifurcation point of r = 0,
h = 0. At this point, bifurcation of bifurcation points come together.
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Ground States and Phase Transition

When h = 0, the system is trivially equal to Equation C.10 and has a double well

potential (Figure C.3) 3. With h ̸= 0, the symmetry of the quadratic free energy starts

to break. Symmetry breaking occurs when a small fluctuation acting on the system

near the critical point alters the fate of the system. The plot of the quadratic Landau

free energy expansion with a linear term (Figure C.6) demonstrates the symmetry

breaking with non-zero |h|. Additionally, the shift in ground states can be seen with

different non-zero r.

3We highlight that the double well potential is a field of great interest in many various areas
of statistical physics and will serve as an important tool in analyzing phase transition of tissue
phenotypes in Chapters 5 and 8.
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Figure C.6: Plot of the quadratic Landau free energy expansion with values of r =
−1, 0, 1: F (M) vs. M . There is a clear symmetry breaking with non-
zero values of h. Furthermore, there are two different second-order
phase transitions.

We note that when r > 0 is fixed, there are bistable steady states for certain values

of h. For instance, as h increases in the lower branch of stability (of the equilibrium

surface (r, h,M)), at the point of saddle-node bifurcation, h must “jump up” to the

higher branch stable branch. Likewise, for the steady state to return to the lower

branch of stability, h must “jump down” on the other end of the saddle-node bifurca-

tion. These “jump” discontinuities are first-order phase transitions, and characterize

hysteresis. Hysteresis is encountered in countless areas of physics and biology (i.e.

thermal cycling and electric displacement fields of a ferroelectric material). They are

considered the memory effect of a system, as there is a delay in “jump” discontinuities

from different directions. For the 2D Ising model with external field, the hysteresis
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is observed, when there is a fast thermal change in fluctuation, resulting in the delay

of phase transition.
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